Rzuty monge'a3

Rzuty monge'a3



i MONGrE’A)


§ 12. Trzecia rzutnia — Transformacje


83


w sposób zaznaczony na rysunku 2.74, tworząc znaną siatkę (rozwinięcie) sześcianu.

W niektórych przypadkach stosuje się także rzutnię ustawioną prostopadle tylko do poziomej lub pionowej rzutni, a także dalsze rzutnie kolejno prostopadłe (transformacje). Ponadto używane są tzw. przekroje.

W przestrzeni trójwymiarowej trzy współrzędne — odległości od trzech rzutni: poziomej, pionowej i bocznej (prostopadłej do pierwszych dwóch) — określają jednoznacznie położenie punktu.

Takie trzy płaszczyzny-rzutnie (an. 41 i rys. 2.75) tworzą układ odniesienia dzielący przestrzeń na 8 części, z których pierwsze cztery odpowiadają poprzednim ćwiartkom, a następne cztery do nich kolejno przylegają. Ezutnie: . pozioma ji1 i pionowa przecinają się wzdłuż osi x (oznaczanej też przez x12), pozioma nx i boczna n3 przecinają się wzdłuż osi y (oznaczanej też przez x13), pionowa n2 i boczna n3 przecinają się wzdłuż osi z (oznaczanej też przez x23). Wszystkie osie przecinają się w początku układu O, należącym do każdej z trzech rzutni.

I

I

,_J__


Przez dowolnie przyjęty w przestrzeni punkt A możemy teraz poprowadzić trzy promienie rzutujące piA_n1, p2\_n2 i p3J_n3, które przebijają kolejno trzy rzutnie nun2 i tz3 odpowiednio w punktach A', A" i A'". Są to rzuty: poziomy, pionowy i boczny punktu A.

) trzy kierunki oku, razem na jący przedmiot, ny rysunkowej


Jeżeli oznaczymy przez Ax, Av i Az punkty, w których osie x, y i z przebijają kolejno płaszczyzny pxp2, pxp3 i p2p3, to łącznie z początkiem układu otrzymamy prostopadłościan o wierzchołkach AA'A"A"’AxAvAzO. Znajdujące się na promieniach p3, p2 i p1 odległości s, g i w punktu A od trzech rzutni n3, %2 i nx odpowiadają współrzędnym xlf yx i z, używanym w geometrii analitycznej. Nazywamy:


Wyszukiwarka

Podobne podstrony:
Rzuty monge a5 85 § 12. Trzecia rzutnia — Transformacje Punkty leżące w różnych ósemkach przestrzen
Rzuty monge a7 87 § 12. Trzecia rzutnia — Transformacje Zadania 2.    Wykreślić rzut
Rzuty monge a9 89 § 12. Trzecia rzutnia — Transformacje 6.    Narysować ślady płaszc
Rzuty monge a3 MONGE’A) prostą do czyznę do f.2lv-a v § 12. Trzecia rzutnia — Transformacje
Rzuty monge a5 SUTY MON&E’A) § 12. Trzecia rzutnia — Transformacje 95 la ", rzuty aJV i
Rzuty monge a3 104    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY M0NSE1 szą
Rzuty monge a3 114    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE i]
Rzuty monge a3 124    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE’A
Rzuty monge a3 : (RZUTY MONGE’A) eh gdy: alJij, jej a z płaszczyzną /} położeniach jak na ry- ołoże
Rzuty monge a3 JTY MONGE’A) § 15. Przekroje, przebicia i przenikania wielościanów 135 nnkniemy rzut
Rzuty monge a 3 ŻUTY MONGE’A) § 15. Przekroje, przebicia i przenikania wielościanów 145 y (an. 54 i
Rzuty monge a2 12. Trzecia rzutnia — T 82    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ R
Rzuty monge a 4 146    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE’A) 1
Rzuty monge a8 § 10. Elementy współ 68    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUT
Rzuty monge a0 70    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE’A) 1
Rzuty monge a1 5UTY MONGE’A) §10. Elementy wspólne 71 zące i na rzutni wyznaczają, rzut ;j w p
Rzuty monge a2 72    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE’A)1 §
Rzuty monge a4 74    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE’AjB f
Rzuty monge a8 78    2. RZUTY PROSTOKĄTNE NA DWIE I WIĘCEJ RZUTNI (RZUTY MONGE’A)I P

więcej podobnych podstron