0052

0052



54


VIII. Funkcja pierwotna (całka nieoznaczona)


m ^ 1, obliczmy pochodną


(xm~i\/Y)' = (m-l)xm-2^Y + -- jl-

2/y


2 (m — 1) xm~2(ax2 + bx + c)+xm~1(2 ax + b)


2 ]/Y

= ma :T + | m—y ) bx _ +(m-l) c ■ 2)    1/Y


x*

Vy


\/Y    ' V*

i scałkujmy otrzymaną tożsamość; otrzymamy

xm~1\/Y = maVm+ (m-±) bYn-i+im-l) cVm-2 . Biorąc tu m = 1 znajdziemy



Biorąc następnie m = 2 i wykorzystując wyrażenie dla Vl otrzymujemy V2 = -^(2^-36) ]/y + JL(3b2-4ac) V0 .

Postępując tak dalej dojdziemy do ogólnego wzoru

Vm = pm-i(x) ]/Y +Am V0 ,

gdzie pm_x (x) jest wielomianem stopnia m — 1, a Am = const. Tak więc wszystkie całki Vm sprowadzają się do V0.

Jeżeli w całce I wielomian P (x) będzie stopnia n, io całka ta będzie kombinacją liniową całek V0, V1,..., Vn, a więc na mocy poprzedniego wzoru można ją napisać w postaci

(9)    fw-JX=eM,/7+ifw’

gdzie Q (x) jest pewnym wielomianem stopnia n— 1, a A = const.

Samo wyznaczenie wielomianu Q (x) i stałej A dokonuje się zwykle metodą współczynników nieoznaczonych. Różniczkując (9) i mnożąc obie strony otrzymanej równości przez )/Y otrzymujemy

P(x) = Q'(x)(ax2 + bx + c)+ y Q (x) (2ax + b) + A.

Jeśli zamiast Q (z) podstawimy tu wielomian stopnia n— 1 o współczynnikach nieoznaczonych, to otrzymamy po obu stronach wielomiany stopnia n. Przyrównując współczynniki


Wyszukiwarka

Podobne podstrony:
P1111274 54 VIII. Funkcja pierwotna (całka nieoznaczona) m > 1, obliczmy pochodną TT . X Ili i/y)
P1111275 56 VIII. Funkcja pierwotna (całka nieoznaczona) Dla obliczenia całki 56 VIII. Funkcja pierw
19763 P1111255 16 VIII. Funkcja pierwotna (całka nieoznaczona) Przypuśćmy, że trzeba obliczyć całkę
P1111275 56 VIII. Funkcja pierwotna (całka nieoznaczona) Dla obliczenia całki 56 VIII. Funkcja pierw
8 VIII. Funkcja pierwotna (całka nieoznaczona) 264. Całka i obliczanie pola. Znacznie ważniejsza jes
16 VIII. Funkcja pierwotna (całka nieoznaczona) Przypuśćmy, że trzeba obliczyć całkę J f(x)dx. W
26 VIII. Funkcja pierwotna (całka nieoznaczona) Otrzymany wzór sprowadza obliczenie całki S„+i do
56 VIII. Funkcja pierwotna (całka nieoznaczona) Dla obliczenia całki dx / (ax2 +
P1111251 8 VIII. Funkcja pierwotna (całka nieoznaczona) 264. Całka i obliczanie pola. Znacznie ważni
P1111260 26 VIII. Funkcja pierwotna (całka nieoznaczona) Otrzymany wzór sprowadza obliczenie całki /
21923 P1111252 10 VIII. Funkcja pierwotna (całka nieoznaczona) Jeśli konkretnie dana funkcja ma punk

więcej podobnych podstron