Wzory redukcyjne
sin(k • 360° 4- a) = sina cos(k • 360° H- a) = cos a k - dowolna liczba całkowita
tg(k • 180° + a) = tg a ctg(fc • 180° -f a) = ctga
sin(—a) = — sina cos(—a) = cos a |
tg(-a) = “tg « ctg(-a) = - ctga | |
sin(90° + a) = cos a cos(90° 4- a) = — sin a tg(90° 4- a) = — ctga ctg(90° 4- a) = — tg a |
sin(180° 4-a) = — sina cos(180° 4-a) = — cos a tg(180° 4- a) = tg a ctg(180° 4- a) = ctga |
sin (270° + a) cos(270° + a) tg(270° + a) ctg(270° + a) |
sin(90° — a) = cos a cos(90° — a) = sina tg(90° — a) = ctga ctg(90° — a) = tg a |
sin(180° — a) = sina cos(180° — a) = — cos a tg(180° — a) = — tg a ctg(180° — a) = — ctga |
sin(270° - a) cos(270° - a) tg(270° - a) ctg(270° - a) |
— cos a sin a
— ctg a -tg a
— cos a
— sili a ctga tg a