CAŁKI
∫(f(x)+ g(x))dx = ∫f(x)dx + ∫g(x)dx
∫a f(x)dx = a ∫f(x)dx
CAŁKOWANIE PRZEZ PODSTAWIENIE:
$$\int_{}^{}\frac{\mathbf{f\ '(x)}}{\mathbf{\text{f\ }}\left( \mathbf{x} \right)}\mathbf{dx = \ ln\ }\left| \mathbf{\text{\ f}}\left( \mathbf{x} \right) \right|\mathbf{+ \ C}$$
CAŁKOWANIE PRZEZ CZĘŚĆI:
∫udv = uv − ∫vdu
INNE WZORY:
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\mathbf{a}^{\mathbf{2}}\mathbf{+ \ }\mathbf{x}^{\mathbf{2}}}\mathbf{= \ }\frac{\mathbf{1}}{\mathbf{a}}\mathbf{\text{\ arctg\ }}\frac{\mathbf{x}}{\mathbf{a}}\mathbf{+ \ C}$$
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\sqrt{\mathbf{a}^{\mathbf{2}}\mathbf{- \ }\mathbf{x}^{\mathbf{2}}}}\mathbf{= \ }\mathbf{\arcsin}\mathbf{\ }\frac{\mathbf{x}}{\mathbf{a}}\mathbf{+ \ }\mathbf{C}$$
$$\int_{}^{}{\mathbf{cos\ ax\ dx = \ }\frac{\mathbf{1}}{\mathbf{a}}}\mathbf{\ sin\ ax + C}$$
$$\int_{}^{}{\mathbf{sin\ ax\ dx = - \ }\frac{\mathbf{1}}{\mathbf{a}}}\mathbf{\ cos\ ax + C}$$
$$\int_{}^{}{\mathbf{\text{e\ }}^{\mathbf{\text{ax}}}\mathbf{\ dx = \ }\frac{\mathbf{1}}{\mathbf{a}}}\mathbf{\ }\mathbf{e}^{\mathbf{\text{ax}}}\mathbf{+ C}$$
$$\int_{}^{}{\mathbf{\text{f\ }}\left( \mathbf{ax + b} \right)\mathbf{dx = \ }\frac{\mathbf{1}}{\mathbf{a}}}\mathbf{\text{\ F\ }}\left( \mathbf{ax + b} \right)\mathbf{+ \ C}$$
całka | f-cja pierwotna | całka | f-cja pierwotna |
---|---|---|---|
∫0 dx |
C | ∫xαdx |
$\frac{x^{\alpha + 1}}{\alpha + 1}$ + C, α ∈ R\ {-1} |
$$\int_{}^{}{\frac{1}{x}dx = \ \int_{}^{}{x^{- 1}\text{dx}}}$$ |
ln|x| + C | ∫axdx |
$\frac{a^{x}}{\ln a}$ + C , a > 0, a ≠1 |
∫sinx dx |
− cosx + C | ∫cosx dx |
sinx + C |
$$\int_{}^{}{\frac{1}{\sin^{2}x}\text{\ dx}}$$ |
− ctgx + C, sinx ≠ 0 | $$\int_{}^{}{\frac{1}{\cos^{2}x}\text{\ dx}}$$ |
tgx + C, cosx ≠ 0 |
$$\int_{}^{}{\frac{1}{{1 + \ x}^{2}}\text{\ dx}}$$ |
arctgx + C | $$\int_{}^{}{\frac{1}{\sqrt{1 - x^{2}}}\text{\ dx}}$$ |
arcsinx + C, −1 < x < 1 |
∫dx = ∫x0dx |
x + C | $$\int_{}^{}{\sqrt{x}\text{\ dx}}$$ |
$\frac{2}{3}\ \sqrt{x^{3}} + \ $C |
∫x dx |
$\frac{x^{2}}{2}$ + C | ∫x2 dx |
$\frac{x^{3}}{3}$ + C |
$$\int_{}^{}{\frac{1}{x^{2}}\text{dx}}$$ |
$- \ \frac{1}{x} + \ $C | ∫exdx |
ex + C |
$$\int_{}^{}{\frac{1}{\sqrt{x}}\text{dx}}$$ |
2$\sqrt{x}$ + C | ∫e−xdx |
−e−x + C |