Zad.1
${\ddot{y}}_{(t)}$+$5{\dot{y}}_{(t)}$+6y(t)=0 y(0+)=a $\dot{y}(0^{+})$=b
L{${\ddot{y}}_{(t)}$+$5{\dot{y}}_{(t)}$+6y(t)}=0
L{${\ddot{y}}_{(t)}$}+5L{$5{\dot{y}}_{(t)}$}+6L{y(t)}=0 Stosuje 3 twierdzenie Laplasa o transformacie pochodnej:
$s^{2}\left( Y_{\left( s \right)} - \frac{a}{s} - \frac{b}{s^{2}} \right) + 5s\left( Y_{\left( s \right)} - \frac{a}{s} \right) + 6Y_{(s)} = 0$
s2Y(s) − as − b + 5sY(s) − as + 6Y(s) = 0
Y(s)(s2+5s+6) = 2as + b /: (s2+5s+6)
$Y_{\left( s \right)} = \frac{2as + b\ }{\left( s^{2} + 5s + 6 \right)}$ Liczymy deltę i rozkładamy na ułamki proste:
=25 − 24 = 1
$\sqrt{} = 1$
s1 = −3
s2 = −2
$Y_{\left( s \right)} = \frac{2as + b\ }{\left( s + 3 \right)(s + 2)} = \frac{A}{s + 3} + \frac{B}{s + 2}$ /* (s+3)(s + 2)
2as + b = As + 2A + Bs + 3B
s1 : 2a = A + B
s0 : b = 2A + 2B
B = 2a − A
2A + 2a − A = b
A = b − 2a
B = 2a − (b − 2a)
B = 4a + b
$Y_{\left( s \right)} = \frac{b - 2a}{s + 3} + \frac{4a + b}{s + 2}$
$L^{- 1}\left\{ Y_{\left( s \right)} \right\} = L^{- 1}\left\{ \frac{b - 2a}{s + 3} \right\} + L^{- 1}\left\{ \frac{4a + b}{s + 2}\ \right\}$
Y(t) = ( b−2a)e−3t + (4a + b)e−2t dla t ≥ 0
Zad 2.
${\ddot{y}}_{(t)}$+4${\dot{y}}_{(t)}$+8y(t)=E*1(t) y(0+)=0 $\dot{y}(0^{+})$=0
L{${\ddot{y}}_{(t)}$+4${\dot{y}}_{(t)}$+8y(t)}=E*L{1(t)}
L{${\ddot{y}}_{(t)}$}+4L{${\dot{y}}_{(t)}$}+8L{y(t)}=E$*\frac{1}{s}$ Stosuje 3 twierdzenie Laplasa o transformacie pochodnej:
s2Y(s)+4sY(s)+8Y(s)= E$*\frac{1}{s}$
Y(s)(s2+4s+8)= E$*\frac{1}{s}$ /: (s2+4s+8)
Y(s)=$\frac{E}{(s^{2} + 4s + 8)}*\frac{1}{s}$
=b2 − 4ac = 42 − 32 = − 16 Delta jest ujemna więc:
Y(s)=$\frac{E}{(s^{2} + 4s + 8)}*\frac{1}{s}$ = $\frac{\text{As} + B}{s^{2} + 4s + 8} + \frac{C}{s}$ / *(s2+4s+8)*s
E=(As+B)s+C(s2+4s+8)=As2+Bs+Cs2+4Cs+8C
s2: 0=A+C
s1: 0=B+4C
s0: E=8C /: *
C=$\frac{E}{8}$
A= - C=$\ - \frac{E}{8}$
B= - 4C= $- \frac{E}{2}$ Podstawiamy pod A,B i C:
Y(s)= $\frac{- \frac{E}{8}s - \frac{E}{2}}{s^{2} + 4s + 8} + \frac{\frac{E}{8}}{s}$
$\frac{- \ \frac{E}{8}s\ - \ \frac{E}{2}}{s^{2} + 4s + 8}$=$\frac{s + 2}{{(s + 2)}^{2} + 2^{2}}*( - \frac{E}{8})$+$\ \frac{2}{{(s + 2)}^{2} + 2^{2}}*( - \frac{E}{8})$
Y(s)=$\frac{s + 2}{{(s + 2)}^{2} + 2^{2}}*\left( - \frac{E}{8} \right) + \frac{2}{{(s + 2)}^{2} + 2^{2}}*( - \frac{E}{8}) + \frac{\frac{E}{8}}{s}$
L−1{Y(s)}=L−1{$\frac{s + 2}{{(s + 2)}^{2} + 2^{2}}$}$*\left( - \frac{E}{8} \right)$+ L−1{$\frac{2}{{(s + 2)}^{2} + 2^{2}}$}$*\left( - \frac{E}{8} \right)$ + L−1{$\frac{\frac{E}{8}}{s}$}
Y(t)=$- \frac{E}{8}\cos{2t{*e}^{- 2t} - \frac{E}{8}}\sin{2te^{- 2t}} + \frac{E}{8}*1_{\left( t \right)}$ dla t≥0