Grupa 1
$${pole:\backslash n}{y = x;\ \ \ y = - x^{2} - 2\backslash n}{calki:\backslash n}{\int_{}^{}\frac{\text{dx}}{- 1 - sinx - 2cosx}\backslash n}{\int_{}^{}\frac{3xdx}{x^{2}\left( x^{2} + 1 \right)\left( x^{2} - 1 \right)}\backslash n}{zbieznosc:\backslash n}{\int_{1}^{+ \infty}{(\left( x^{2} - 3x \right)e^{- 2x}})dx\backslash n}$$
stare
$$\int_{}^{}\frac{\text{dx}}{x\left( x^{2} - 4 \right)}$$
$$\int_{}^{}\frac{\text{dx}}{\left( x + 4 \right)\left( x + 3 \right)\left( x - 3 \right)}$$
$$\int_{}^{}\frac{\left( x - 1 \right)\text{dx}}{x^{2}\left( x^{2} + 1 \right)}$$
$$\int_{}^{}\frac{\text{xdx}}{\left( x^{2} + 2 \right)\left( x^{2} + 3 \right)}$$
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\mathbf{3 + 3}\mathbf{sin + 2}\mathbf{\text{cosx}}}$$
$$\int_{}^{}\frac{\mathbf{4}\mathbf{\text{xdx}}}{\mathbf{x}^{\mathbf{2}}\left( \mathbf{x}^{\mathbf{2}}\mathbf{- 4} \right)\left( \mathbf{x}^{\mathbf{2}}\mathbf{+ 4} \right)}\backslash n$$
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\mathbf{3 + 3}\mathbf{sin + 2}\mathbf{\cos}}$$
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\mathbf{4}\mathbf{sin + 3}\mathbf{cos + 4}}$$
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\mathbf{1 + sin + cos}}\backslash n$$
$$\int_{}^{}\frac{\mathbf{\text{dx}}}{\left( \mathbf{x + 4} \right)\left( \mathbf{x}^{\mathbf{2}}\mathbf{- 9} \right)}$$
y = −x; y = x2 − 6 ∖ n ∖ n