Ciąg geometryczny
<- z równania x + f = 14 obliczamy t z równania y + z = 12 obliczamy z
y1 = x • (12-y)
2 (12 - y) = y + (14 - x) t= 14-x z — 12-y
y2 = 12x — xy 24-2y = y + \4-x t= 14-x
z = 12 —y
y- = \2x~xy -2y-y + x=\4-24 t= 14 - x z = 12 -y
y-= 12x-xy -3y + x = -10 /= 14-x z = 12 -y
y2 = 12x -xv x = 3y -10 t= 14-x z= 12—y
y2- 12(3y- 10) — (3y — 10)y x = 3y - 10 t= 14-x z = 12-y
y2 = 36y - 120 - 3r +10y x = 3y - 10 t= 14-x z= 12-y
y2 - 36y +120 + 3y2 - 10y = 0 x = 3y- 10 t= 14-x z = 12-y
<• • w miejsce z podstawiamy 12-y <- w miejsce t podstawiamy 14 - x
w miejsce x podstawiamy 3y- 10
to równanie trzeba uporządkować
62