SP¡080

SP¡080



RACHUNEK PRAWDOPODOBIEŃSTWA I STA I YSI ^KA

Egzamin - Inżynieria Produkcji - 2.02.2005

ft

1. (5 pkt) Zmienna losowa X ma rozkład prawdopodobieństwa postaci: P(X = -1) = O k

P(X = 1) = 0.1, P(X = 2) = 0.6.

Oblicz a) dystrybuantę zmiennej losowej X, b) wariancję X, c) kwantylę rzędu 0.3 zmiennej losowej A', d) medianę X> e) modę.

2. (5 pkt) W celu oszacowania dokÅ‚adnoÅ›ci pewnego przyrzÄ…du pomiarowego dokonano n - 2o pomiarów tej samej wielkoÅ›ci i otrzymano wariancjÄ™ z próby s2 = 4. Przy współczynniku ufnoÅ›ci 1-a = 0.98 znaleźć przedziaÅ‚ ufnoÅ›ci dla nieznanej wariancji pomiaru tym przyrzÄ…dem.

3. (5 pkt) Zmierzono czas pracy w ciÄ…gu jednego dnia 10 pracowników firmy A i otrzymano Å›reni czas Å›redni czas X\ — 400 min. oraz wariancjÄ™ z próby s i 10 a dla 12 pracowników firmy B otrzymano Å›redni czas X2 — 450 min. oraz wariancjÄ™ z próby 02    15. Na poziomie

istotności a = 0.1 zweryfikować hipotezę, pracownicy firmy B pracują dłużej niż pracownicy

firmy A.

4. (za każdÄ… prawidÅ‚owÄ… odpowiedź: -f- 1 pkt, za każdÄ… zÅ‚Ä… odpowiedź. -1 pk^, za brak odpowiedzi: 0 pkt) Czy poniższe zdanie jest prawdziwe:

j(a) Jeżeli A CB, to P{A) < P(B).    ' '

i


(b) Zbiór zdarzeń losowych dla rzutu dwiema różnymi monetami składa się. z czterech elementów.

(c) Prawdopodobieństwo tego, że przy jednym rzucie kostką wypadła szóstka jeżeli wiadcmo, że wypadła jedynka wynosi zero.

|^/ (d) Zmienna losowa nie może osiągać wartości ujemnych.

'T(e) Funkcja F(x) = 1 dla x. € R jest dystrybuantą pewnej zmiennej losowej.

({) Zmienna losowa jest funkcją określona na zbiorze zdarzeń elementarnych.

f\J(g) Jeśli P(X = 0) = 1, to E(X) = 1

i\j (h) Funkcja gęstości prawdopodobieństwa jest funkcją nieujemną. ffli) Kwantyl rzędu p nie może przyjąć wartości ujemnej.'

i (j) Jeżeli zmienne losowe X i Y są niezależnie, to D2(X — Y) = D2(X) — D2(Y)

J\^(k)' Dystrybuanta zmiennej losowej X może przyjąć wartość 7.

-*P(1) Wartość oczekiwana zmiennej losowej o rozkładzie £(100,1) wynosi 100. y(m) Wariancja zmiennej losowej o rozkładzie N(2,5) wynosi 25.

/ (n) Wykład z RAPiS dla Inżynierii Produkcji w tym semestrze odbywał się w poniedziałki. | (o) Próba jest podzbiorem populacji

yr    i . ,    "    4

zaliczenie egzaminu następuje przy otrzymaniu co najmniej 15 punktów w tym c«

-L.K mini/fntir rro 'rnrinninl/1 (fpcfnwp^


Wyszukiwarka

Podobne podstrony:
SP?065 RACHUNEK PRAWDOPODOBIEŃSTWA I STAJ i SI N KA Egzamin - Inżynieria Rrodukcji - 1.02.2006 1. (f
SP?063 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTY KA Egzamin ~ Inżynieria Produkcji - 1.02.2006 O  
SP?073 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Inżynieria Produkcji - 2.02.2005 k I
SP?077 RACHUNEK PRAWDOPODOBIEŃSTWA J STATYSTYKA Egzamin - Inżynieria Produkcji - 2.02.2005 (5 pkt) Z
test1 X 1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Inżynieria Produkcji - 2.02.2005 1.
RAPIS016 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Inżynieria Produkcji - 2.02.2005 1. &nbs
SP?074 RACHUNEK PRAWDOPODOBIEŃSTWA I SM AU S 15 KA Egzamin - Mechanika/Inżynieria Produkcji - 9.02
RAPIS021 i RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Inżynieria Produkcji - 1.02*2006 L (5
RAPIS021 i RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Inżynieria Produkcji - 1.02*2006 L (5
55100 RAPIS018 /<£ RACHUNEK PRAWDOPODOBIEŃSTWA l STATYSTYKA Egzamin - Inżynieria Produkcji - 1.02
test2 1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Mechanika/Inżynieria Produkcji - 7.02.200
RAPIS021 i RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin - Inżynieria Produkcji - 1.02*2006 L (5
46286 RAPIS025 2 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA Egzamin Inżynieria Produkcji - 1.02.2006 1

więcej podobnych podstron