KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Ćwiczenie 12
Zad. 12.1
Obliczyć kąt obrotu
Rys. 12.1.1
Korzystamy z II twierdzenia redukcyjnego
M " M
p
= ds (12.1)
+"
EI
L
Rozwiązanie M - stan obciążenia zewnętrznego w układzie podstawowym metody sił:
p
Rys. 12.1.2
Rozwiązanie M - jednostkowe obciążenie wirtualne w układzie niewyznaczalnym stosujemy
metodę sił
Rys. 12.1.3
l 2l
10 =- , 11 = ! X1 = 0,5[-]
3EI 3EI
Rys. 12.1.4
M " M
1 2 ql2 l ql3
p
= ds = " "l " " =
+"
EI EI 3 8 4 48EI
L
C16-2005-cw12
94
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Inny układ podstawowy (ze stanem obciążenia zewnętrznego):
Rys. 12.1.5
M " M Ą#1 ql2 3 1 1 ql2 2 1 ś#ń# ql3 # 1 1 ś# ql3
1 # ś# # ś#
=p1 ds = " "ś# - " " + "ś# - " "# - = - + =
ó#3 2 4 2 2 2 3 2 Ą#
ź#"l ź#"l ś# ź# ś# ź#
+"
EI EI 16 12 48EI
# # # ## #Ś# EI # #
L Ł#
Zad. 12.2
Obliczyć kąt obrotu
Rys. 12.2.1
Korzystamy z II twierdzenia redukcyjnego
M " M
p
= ds (12.2)
+"
EI
L
Jednostkowe obciążenie wirtualne w układzie podstawowym metody sił wg rysunku:
Rys. 12.2.2
Obciążenie zewnętrzne w układzie niewyznaczalnym rozwiązanie metodą przemieszczeń (ng =1)
Rys. 12.2.3
C16-2005-cw12
95
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Momenty wyjściowe:
3" 42
0
M =- =-4[kNm]
A1
12
0
M1A = 4[kNm]
3
0
M1B =- "16"3 =-9 [kNm]
16
1
0
M1C =- "8 =-4 [kNm]
2
Sumaryczne momenty przywęzłowe:
Rys. 12.2.4
M =-4 + EI
A1
M1A = 4 + 2EI
M1B =-9 + EI
M1C =-4 +1,5EI
Równanie równowagi:
ŁM1 = M1A + M1B + M1C = 0
2
-9 + 4,5EI = 0 ! =
EI
Wartości momentów przywęzłowych
M =-4 + 2 =-2 [kNm]
A1
M1A = 4 + 4 = 8[kNm]
M1B =-9 + 2 =-7 [kNm]
M1C =-4 + 3 =-1[kNm]
Potrzebny jest jedynie fragment wykresu M na odcinku 1- B
Rys. 12.2.4
M " M
1 1 1 1 1 5,5
Ą#
p
= ds = " "3"12" + "3" " "1ń# = = 0,0055 [rad] = 18'55"
(-7
)
+"
ó#2 2 2
EI EI 3 1000
Ł#Ą#
Ś#
L
C16-2005-cw12
96
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Zad. 12.3 (*zadanie dodatkowe)
Obliczyć kąt obrotu A wywołany równomiernym ogrzaniem elementu B-1 o wielkość
1
t0 = 24oC , ąt =10-5 o
C
Rys. 12.3.1
Z zasady prac wirtualnych wynika wzór:
M " M
A = ds + Nątt0ds (12.3)
+"+"
EI
LL
Przy zastosowaniu I twierdzenia redukcyjnego dostajemy
M " M
p
A = ds + Nątt0ds = Nątt0ds (M = 0) (12.4)
p
+"+" +"
EI
LL L
Należy rozwiązać układ wyjściowy (niewyznaczalny) z obciążeniem wirtualnym potrzebna jest
jedynie siła normalna N1B
Metoda przemieszczeń (ng =1)
Rys. 12.3.2
Momenty wyjściowe:
0
M1A = 0,5 [-]
Sumaryczne momenty przywęzłowe:
M1A = 0,5 + EI
M1B = EI
M1C = EI
MC1 = 0,5EI
Równanie równowagi:
ŁM1 = M1A + M1B + M1C = 0
1
0,5 + 3EI = 0 ! = -
6EI
C16-2005-cw12
97
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Wartości momentów przywęzłowych
1 1 1
M1A = - = [-]
2 6 3
1
M1B =- [-]
6
1
M1C =- [-]
6
1
MC1 =- [-]
12
Rozwiązanie:
Rys. 12.3.3
4 1 73 1
ś# Ą# ń#
N1B =-# + =- =-0,5069
ś# ź#
ó#m Ą#
9 16 144
# # Ł# Ś#
= Nątt0ds =10-5 " 24"(-0,5069) "6 = -7,3"10-3 [rad] = -25'05"
+"
L
Zad. 12.4
Obliczyć przemieszczenie układu ramowego wywołane wymuszeniem kinematycznym -
przemieszczeniem podpory "B = 5[cm]
Rys. 12.4.1
M " M
= ds - " Ri " "i (12.5)
+"
EI
L
C16-2005-cw12
98
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Stosując II twierdzenie redukcyjne obciążenie zewnętrzne w układzie podstawowym metody sił,
obciążenie wirtualne w układzie niewyznaczalnym
Wzór zapisujemy w postaci:
=- " Ri " "i (M = M" =0) (12.6)
p
Rozwiązanie dla obciążenia wirtualnego w układzie niewyznaczalnym (należy obliczyć jedynie
reakcję HB ).
Rys. 12.4.2
1 1 2 1 1 6
10 = " "3"3" "1+ " "3" 4"1 =
EI 2 3 2EI 2 EI
1 1 2 1 4
11 = " 2" "3"1" "1+ "1" 4"1 =
EI 2 3 2EI EI
X1 =-1,5 [m]
Reakcja HB (z superpozycji)
1
HB = 0 + "(-1,5) = -0,5 [-]
3
Przemieszczenie:
=-5"(-0,5) = 2,5 [cm]
Zad. 12.5
Dla kratownicy jak na rys. obliczyć przemieszczenie . EA = const.
Rys. 12.5.1
C16-2005-cw12
99
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Wykorzystując II twierdzenie redukcyjne można zapisać
Si p Si
( )
=" li (12.7)
EAi
Si p
( ) - siły w prętach w układzie podstawowym metody sił, obciążenie zewnętrzne
Si - siły w prętach w układzie niewyznaczalny, obciążenie wirtualne
Obciążenie zewnętrzne w układzie podstawowym metody sił:
Rys. 12.5.2
Niezerowe są jedynie pręty 1, 3, 4 i 5
Obciążenia wirtualne w układzie niewyznaczalnym:
Rys. 12.5.3
Ą#ń#
Si0Si1 1 2 2 1 1 a 2 2 -1
ś#
10 =" li = -
ó#2" " " a 2 + 2" "# aĄ# =
ś# ź#" EA 2
EAi EA 2 2 2 2
# #
Ł#Ś#
Ą#ń#
Si1Si1 1 2 2 1 1 a 6 2 + 7
11 = " li =
ó#2" " " a 2 + 2 2 " a 2 + 3"1"1" a + 2" " " aĄ# =
EAi EA 2 2 2 2 EA 2
Ł#Ś#
2 2 -1
X1 =- H"-0,1181
6 2 + 7
Rozwiązanie uzyskujemy z superpozycji:
Si = Si0 + Si1 " X1
S1 =-0,6236
S2 = 0
S3 = 0,6236
S4 = S5 = -0,5591
C16-2005-cw12
100
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Szukane przemieszczenie:
Si p Si 1 PPa
( )
=" li = " 2" "
(-0,5591 " a =-0,5591
)
EAi EA 2 EA
Zad. 12.6
Obliczyć przemieszczenie powstałe pod wpływem nierównomiernego ogrzania całego układu
"t = td - tg = 32oC
h = 0, 4 [m] = const
Ą# ń#
ąt = 10-5 Ł#deg-1Ś#
EI = const
Rys. 12.6.1
Z zasady prac wirtualnych wynika wzór:
ąt"t MM
= ds (12.8)
+"M h ds + +"
EI
LL
Stosując I twierdzenie redukcyjne mamy:
M M
ąt"t ąt"t
p
= ds = (12.9)
+"M h ds + +" +"M h ds
EI
LL L
gdyż M = 0 (wpływ temperatury w układzie podstawowym metody sił)
p
Obciążenia wirtualne w układzie niewyznaczalnym
Metoda sił (ns =1)
Rys. 12.6.2
C16-2005-cw12
101
KMB, WILiŚ, PG MECHANIKA BUDOWLI I (C16) Rok II, semestr IV (letni 2005)
Wykłady: P. Iwicki, M. K. Jasina
Ćwiczenia: M. Dudek, A. Kozakiewicz, T. Mikulski, M. Miśkiewicz, A. Sitarski, M. Skowronek, M. Szafrański, M. Zasada
Rys. 12.6.3
1 1 2
10 = " " 2" 2"1 =
EI 2 EI
1 1 2 8
Ą#
11 = " "1"1" "1+ 2"1"1ń# =
ó#2 3 Ą#
EI 3EI
Ł#Ś#
10 3
X1 =- =-
11 4
1 3 1 3 1 5 1
ś# ś#
- -
ś# ź# ś# ź#
+"Mds = " 2"# + 2 " 2"# + 2 " 2" = -
2 4 4 4 4
# # # #
L
Szukane przemieszczenie:
ąt"t 10-5 "32 1
ś#
= "# - = -2"10-4 [m] = -0,02 [cm]
ś# ź#
+"M h ds =
0, 4 4
# #
L
C16-2005-cw12
102
Wyszukiwarka
Podobne podstrony:
C16 2005 cw08C16 2005 cw09C16 2005 cw04C16 2005 cw03C16 2005 cw10C16 2005 cw02C16 2005 cw13C16 2005 cw06C16 2005 cw14C16 2005 cw01C16 2005 cw11C16 2005 cw11C16 2005 cw08C16 2005 cw14C16 2005 cw09C16 2005 cw06C16 2005 cw04więcej podobnych podstron