1636661213

1636661213



Jarosław Wróblewski


Analiza Matematyczna 1A, zima 2012/13


Wyznaczyć kresy zbiorów 326.{J;(4)":AreN}    327. {£,(-§)" =

32s-


M,N G N A M<N


}


Zadania do samodzielnej powtórki.

Jeśli uda się wygospodarować trochę czasu, wątpliwości związane z tymi zadaniami mogą być wyjaśnione na konwersatorium lub ćwiczeniach.

Zawsze można też skorzystać z konsultacji.


329. Rozstrzygnąć zbieżność szeregu

y] (Vre3 + 64 — Vn3 +1) .


330. Rozstrzygnąć zbieżność szeregu

9n4 — 7rz3 +1


E


19n5 - 13n2 +1 '


331. Rozstrzygnąć zbieżność szeregu

9n4 — 7n3 +1


^19n6-13n2 + l ' 332. Rozstrzygnąć zbieżność szeregu

■g. M-nl-o”


w zależności od parametru rzeczywistego dodatniego a. Dla jednej wartości a można nie udzielić odpowiedzi.

333. a) Udowodnić zbieżność szeregu


b) Obliczyć jego sumę. 334. Obliczyć granicę


/n2 + k — n


335. Rozstrzygnąć zbieżność szeregu

,2009




Wyszukiwarka

Podobne podstrony:
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 213.    Zbiory A i B są nie
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 istnieje a G A takie, że
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 239.    (
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 W2 252.6. F infF =......... Czy kres dolny
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 252.13. M =
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 inf J
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 n 275. E^ “ n4 276. f; 1 2n —
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 dla dowolnej liczby naturalnej k zachodzi
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 Y nlo1„n jest zbieżny dla a> 1, rozbież
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 313. Szereg jest rozbieżny, szereg ^(a2n-i
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 7.    Słabe nierówności
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 x-yv^+ ^y+ ¥? Zadania Wyjaśnić, dlaczego
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 178. Obliczyć wartość granicy lim 2n+2 +
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 Dana pod znakiem granicy suma ma 2n składn
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 na mocy twierdzenia o trzech ciągach otrzy
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 na mocy twierdzenia o trzech ciągach otrzy
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 196.    Dany jest taki ciąg
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 nazywamy ograniczeniem górnym zbioru
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13Ciągi. Ćwiczenia 5.11.2012: zad. 140-173

więcej podobnych podstron