1. Wyznaczyć rząd macierzy
1 2 3 |
1 |
-2 -1 |
1 | ||
A = |
4 5 6 |
B = |
3 - |
1 4 |
3 |
7 8 9 |
1 |
-9 -8 |
1 | ||
1 -1 |
0 |
2 1 |
2 | ||
C = |
3 1 |
1 |
3 2 |
D = |
3 |
-1 -3 |
-1 |
1 0 |
4 |
'2 1-12' |
F = |
3 1 |
-1 2 |
3 1 0 2 |
6 2 |
-2 4 |
IX| + + 2xj - x4 = 3
2X| + Xj -3xj +3x4 = 1 4X| + 3xj + x3 + x4 = 7
1. R(A)=2, R(B)=3, R(C)=2, R(D)=2,
0 3-5 |
4 |
-1 l‘ | |
1 1 -1 |
1 |
H = |
2 -2 |
2 1 3 |
-2 |
3 -3 | |
2 1 0 | |||
'2 4 5' | |||
N = |
0 1 2 | ||
1 2 3 | |||
1 0 2 |
2. Rozwiązać układy rownan
( x-2y + 3z = 1 a) 12x - 4y + 6: = 2 (3x-6y + 9c = 3
3x + 2y-c = 0 c) 2x - y + 3: = 0 x + 3y - 4: = 0
2x-3y = 6 c) x + 2y = 4 x-5y = 5
{x + 2y + 3: = 4 2x+ y- z = 3 3x + 3y + 2: = l
f *+y = \
d) - 2x + 2y = 2 (3.r + 3y = 3
[2x-3y = 6 f) ^3x+ y = 9 [x + 4y = 3
2x + 2y -8: = 1 5x -5y- lOe = 3
I x+2y+3z=4 h) 2x+ 4y+6z= 3 | - 2x+ y- z = l
fx, + x2+x3 + x4=5 [x, + x2+2x3-x4=3
I3xj -5xj +4x4 =8
xl+x2_x3 + x4=5 2X| - Xj + 3xj - 2x4 = 2
R(E)=2, R(F)=1, R(G)=3, R(H)=1,
R(M)=2, R(N)=3
2. a) ukl. nieozn. R(A) = R(U) - 1
x = 1 + 2t - 3s, y = /, z = s, t,s' R
b) ukl. nieozn. R(A) = R(U) = 2
x = ^(2 + 5/), y = ±(5-7/), z = t;teR
c) ukl. nieozn R( A) = R(U) = 2 x = -|r, y = yi, z = t; t eR
d) ukl. nieozn. R( A) = R(U) - 1 x = l, y=\-l; 1 eR
e) ukl. sprzeczny, R( A) = 2, R(U) = 3
f) ukl. ozn. x = 3, y-0
g) ukl. nieozn. R( A) = R(U) = 2
z = ^(20t-ll);t£R
h) ukl. sprzeczny, R( A) = 2, R(U) = 3
i) R(A) = R(U) = 2
j) R(A) = R(U) = 2
k) R(A) = R(U) = 2
i)