W y k Ba d 1 2 .
I . P r d z m i e n n y .
R y s .
1 . S i Ba e l e k t r o m o t o r y c z n a i n a t \e n i e p r d u z m i e n n e g o .
= o s i n ( "t ) a n a t \e n i e p r d u I = I o s i n ( " t - )
g d z i e o d p o w i e d n i o :
o , I o , s t o ; a m p l i t u d a s i By e l e k t r o m o t o r y c z n e j , n a t \e n i a p r d u i f a z a p o c z t k o w a
2 . E l e m e n t y o b w o d u p r d u z m i e n n e g o .
a ) O p o r n i k r z e c z y w i s t y R
- U = 0
R
= U = E o s i n ( "t ) I I p r a w o K i r c h h o f f a
R
U = U s i n t
R R m a x
U U
R R m a x
I = = s i n ( " t ) = I R m a x s i n ( " t )
R
R R
U = I R m a x R
R m a x
g d z i e :
U i I s t o o d p o w i e d n i o m a x n a p i c i e i m a x n a t \e n i e p r d u n a o p o r n i k u
L m a x L m a x
b ) k o n d e n s a t o r o p o j e m n o [c i C , ( r e a k t a n c j a p o j e m n o [c i o w a )
U C = U C m a x s i n t
c o s ( "t ) = s i n ( "t + 9 0 o )
q C = C U C = C U C m a x s i n ( " t )
1
R C =
d q C
" C
I C = = " C U C m a x c o s ( " t )
d t
U C m a x
I C = (
s i n "t + 9 0 o )
R C
I C = I C m a x s i n ( " t - )
U C m a x = I C m a x X
C
g d z i e :
U C m a x i I C m a x s t o o d p o w i e d n i o m a x n a p i c i e i m a x n a t \e n i e p r d u n a k o n d e n s a t o r z e
1
R C =
j e s t t o r e a k t a n c j a p o j e m n o [c i o w a ( o p r p o j e m n o [c i o w y , p o z o r n y )
" C
J e d n o s t k w u k Ba d z i e S I j e s t o m .
c ) c e w k a o i n d u k c y j n o [c i L , ( r e a k t a n c j a i n d u k c y j n a )
d I
U = L "
L
- U = 0
L d t
= U = U s i n ( " t ) I = = ( U
L L m a x L m a x
s i n ( " t ) d t
L
+"d I " L ) +"
U
L m a x
I = = - ( ) " c o s ( " t )
L
+"d I " " L
R L = " L j e s t t o r e a k t a n c j a i n d u k c y j n a ( o p r i n d u k c y j n y , p o z o r n y )
J e d n o s t k w u k Ba d z i e S I j e s t o m .
Z a s t p u j e m y : - c o s " t = s i n ( " t - 9 0 o )
U
L m a x
I = ) " s i n ( " t - 9 0 o ) 0 g l n i e
I = I L m a x " s i n ( " t - )
L
L
R L
U = I L m a x R L g d z i e :
L m a x
U i I s t o o d p o w i e d n i o m a x n a p i c i e i m a x n a t \e n i e p r d u n a c e w c e
L m a x L m a x
i n d u k c y j n e j
d ) O b w d s z e r e g o w y R L C
M a m y o b w d z Bo \o n y z s z e r e g o w o p o Bc z o n y c h : o p o r n i k a , k o n d e n s a t o r a i c e w k i
i n d u k c y j n e j . ( r y s t a b l i c a )
= m a x s i n ( " t ) I = I m a x s i n ( " t - ) g d z i e :
E m a x
I m a x =
2
Z = R 2 + ( R L - R C ) i m p e d a n c j a ( z a w a d a ) o b w o d u
Z
R L - R C
t g = f a z a p o c z t k o w a
R
S z c z e g l n e p r z y p a d k i :
1 ) R L > R C o b w d m a c h a r a k t e r i n d u k c y j n y
2 ) R L <