background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

 

 

Zad.1   

 

(

)

dl

y

x

L

+

2

2

   

( )

1

,

1

A

 ; 

( )

4

,

4

B

 

+

=

+

=

b

a

b

a

4

4

1

 

 

=

=

0

1

b

a

  

 

x

y

=

 

1

'

=

y

 

(

)

3

2

126

2

2

1

1

4

1

2

4

1

2

2

=

=

+

+

dx

x

dx

x

x

 

 

 

Zad.2

   

 

(

)

L

dl

y

x

2

   

( )

2

,

2

A

 ; 

(

)

4

,

2

B

 

+

=

+

=

b

a

b

a

2

4

2

2

 

 

=

=

3

2

1

b

a

 

 

3

2

1 +

=

x

y

 

2

1

'

=

y

 

5

6

3

4

5

2

5

3

2

5

2

5

2

1

1

3

2

1

2

2

2

2

2

2

2

2

2

=

=

=

+

+

x

x

dx

x

dx

x

x

 

 

 

Zad.3   

 

( )

L

dl

y

  

 

x

y

4

2

=

 

( )

0

,

0

O

 ; 

( )

2

,

1

P

 

( )

x

x

y

1

1

'

2

2

=

=

 

(

)

1

8

3

4

3

4

2

1

1

2

1

2

2

1

2

3

2

1

1

0

1

0

=

=

=

=

=

+

=

+

=

+

t

dx

t

dt

dx

t

x

dx

x

dx

x

x

x

 

 

 

Zad.4 

 

( )

L

dl

y

  

 

3

x

y

=   

( )

1

,

1

A

 ; 

( )

8

,

2

B

 

( )

( )

4

2

2

2

9

3

'

x

x

y

=

=

 

(

)

3

3

145

10

3

145

10

2

3

2

4

2

1

4

3

10

145

54

1

54

1

18

1

18

1

9

1

9

1

=

=

=

=

=

+

=

+

t

dt

t

tdt

dx

x

t

x

dx

x

x

 

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

Zad.5

 

 

L

dl

y

x

4

 

 

x

y

1

=

   

2

1

≤ x

 

( )

4

2

2

2

1

1

'

x

x

y

=

=

 

(

)

2

2

17

17

6

1

6

1

2

1

2

1

1

1

1

17

2

3

17

2

2

3

2

4

4

2

1

3

4

4

2

1

5

=

=

=

=

=

+

=

+

=

+

t

dt

t

tdt

dx

x

t

x

dx

x

x

dx

x

x

x

 

 

Zad.6

 

 

( )

dl

x

y

L

cos

2

   

( )

x

sin

=

 

2

0

π

≤ x

 

( )

( )

x

y

2

2

cos

'

=

 

( ) ( )

( )

( )

( ) ( )

(

)

1

2

2

3

2

3

2

2

sin

cos

cos

1

cos

1

cos

sin

2

1

2

3

1

2

2

2

2

2

2

0

=

=

=

=

=

+

=

+

t

dt

t

tdt

dx

x

x

t

x

dx

x

x

x

π

 

 

Zad.7

 

 

+

L

dl

x

4

9

1

   

x

x

y

=

 

4

0

≤ x

 

( )

x

x

y

4

9

2

3

'

2

2

=

=

 

22

18

4

8

9

4

9

1

4

9

1

4

9

1

4

0

2

4

0

4

0

=

+

=

+

=

+

=

+

+

x

x

dx

x

dx

x

x

 

 

Zad.8

 

 

(

)

+

L

dl

y

x

 

 

( )

0

,

0

O

 ; 

( )

0

,

1

A

 ; 

( )

1

,

0

B

 

=

=

=

=

+

=

1

0

0

:

1

0

0

:

1

0

1

:

3

2

1

t

t

x

y

l

t

t

y

x

l

x

x

y

l

 

(

)

(

)

=

=

+

+

=

1

0

1

0

2

2

1

1

1

1

dx

dx

x

x

dl

y

x

l

 

(

)

=

+

=

1

0

2

1

1

0

2

dt

t

dl

y

x

l

 

(

)

=

+

=

1

0

2

1

0

1

3

dt

t

dl

y

x

l

 

(

)

2

1

2

1

2

1

2

+

=

+

+

=

+

L

dl

y

x

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

Zad.9

 

 

dl

xy

L

2

6

 

 

( )

t

x

cos

3

1

=

 

( )

t

y

sin

3

1

=

 

4

0

π

≤ t

 

( )

( )

( )

t

t

x

2

2

2

sin

9

1

sin

3

1

'

=

=

 

( )

( )

( )

t

t

y

2

2

2

cos

9

1

cos

3

1

'

=

=

 

( )

( )

( )

( )

( )

( )

162

2

648

2

81

2

27

2

cos

sin

sin

cos

27

2

9

1

sin

9

1

cos

3

1

6

2

5

2

2

0

3

2

2

0

2

2

4

0

2

4

0

=

=

=

=

=

=

=

=

u

du

u

du

dt

t

u

t

dt

t

t

dt

t

t

π

π

 

Zad.11

 

 

+

L

dl

y

xz

2

1

 

 

t

x

=  ; 

2

t

y

=  ; 

3

3

2

t

z

=

 

1

0

≤ t

 

( )

1

'

2

=

x

 

( )

2

2

4

'

t

y

=

 

( )

4

2

4

'

t

z

=

 

(

)

15

2

3

2

2

1

2

1

3

2

4

4

1

2

1

3

2

1

0

4

2

2

1

0

2

4

4

2

1

0

2

4

=

=

+

+

=

+

+

+

dt

t

dt

t

t

t

dt

t

t

t

t

 

 

Zad.12

 

 

( )

L

dl

xy

 

 

t

e

x

=  ; 

t

e

y

=

 ; 

t

z

2

=

 

1

0

≤ t

 

( )

t

e

x

2

2

'

=

 

( )

t

e

y

2

2

'

=

 

( )

2

'

2

=

z

 

( )

(

)

( )

=

+

=

+

+

=

+

+

=

+

+

dt

e

e

dt

e

e

e

dt

e

e

dt

e

e

e

e

t

t

t

t

t

t

t

t

t

t

t

1

0

2

2

2

1

0

2

2

2

2

1

0

2

2

2

2

1

0

1

1

2

2

2

 

(

) (

) (

)

1

1

0

1

0

1

1

0

2

1

1

1

=

+

=

=

+

=

+

=

e

e

e

e

e

e

dt

e

e

dt

e

e

t

t

t

t

t

t

 

 

Zad.13 

 

(

)

+

L

dl

z

y

x

   

( )

t

cos

=

 

( )

t

sin

=

 

t

z

4

3

=

  

π

2

0

≤ t

 

( )

( )

t

x

2

2

sin

'

=

 

( )

( )

t

y

2

2

cos

'

=

 

( )

16

9

'

2

=

z

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

( ) ( )

( ) ( )

( )

( )

( )

=

=

=

=

+

=

+

+

du

dt

t

u

t

dt

t

t

t

t

dt

t

t

t

cos

sin

cos

4

3

sin

cos

4

5

16

9

1

4

3

sin

cos

2

0

2

0

π

π

 

( )

( )

( )

( )

( )

(

)

( )

( )

0

cos

16

15

sin

sin

16

15

sin

1

'

cos

'

cos

16

15

4

5

2
0

2

0

2
0

2

0

0

0

=

=

=

=

=

=

=

=

+

π

π

π

π

t

dt

t

t

t

t

q

p

t

q

t

p

dt

t

t

du

u

 

 

Zad.14 

 

( )

L

dl

z

  

 

( )

t

t

x

cos

=

 

( )

t

t

y

sin

=

 

t

z

=

   

1

0

≤ t

 

( )

( )

( )

(

)

( )

( ) ( )

( )

t

t

t

t

t

t

t

t

t

x

2

2

2

2

2

sin

sin

cos

2

cos

sin

cos

'

+

=

=

 

( )

( )

( )

(

)

( )

( ) ( )

( )

t

t

t

t

t

t

t

t

t

y

2

2

2

2

2

cos

sin

cos

2

sin

cos

sin

'

+

+

=

+

=

 

( )

1

'

2

=

z

 

(

)

2

2

3

3

3

1

3

1

2

2

1

1

3

2

3

3

2

2

2

2

1

0

2

1

0

2

=

=

=

=

=

+

=

+

=

+

+

u

du

u

udu

tdt

u

t

dt

t

t

dt

t

t

 

 

Zad.15 

 

=

L

dl

L

 

( )

x

ln

=

 

5

2

≤ x

 

( )

2

2

1

'

x

y

=

 

( )

(

)

( )

=

+

+

=

=

+

=

=

+

=

=

+

=

+

=

5

2

2

5

2

2

2

2

1

2

5

2

2

5

2

2

1

1

1

1

'

ln

'

1

1

ln

1

1

x

dx

x

x

x

v

x

x

u

x

v

x

u

dx

x

x

dx

x

L

 

(

)

(

) (

)

+

+

+

=

+

+

+

=

+

+

=

26

5

5

2

ln

2

5

5

26

5

2

ln

26

5

ln

2

5

5

26

1

ln

2

5

5

26

5

2

2

x

x

 

Zad.16 

 

=

L

dl

L

 

( )

t

x

cos

7

=

 

( )

t

y

sin

7

=

 

π

4

3

0

t

 

( )

( )

t

x

2

2

sin

49

'

=

 

( )

( )

t

y

2

2

cos

49

'

=

 

4

21

7

49

4

3

0

4

3

0

π

π

π

=

=

=

dt

dt

L

 

 

Zad.17 

 

( )

γ

γ

cos

1

+

=

r

 

 

π

γ

0

 

(

)

(

)

+

=

+

=

γ

γ

γ

γ

sin

cos

1

cos

cos

1

:

y

x

L

 

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

(

)

(

)

γ

γ

γ

γ

γ

γ

γ

cos

cos

1

sin

'

sin

cos

1

cos

sin

'

2

+

+

=

+

=

y

x

 

( )

(

) (

)

( )

(

)

(

)

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

2

2

2

4

2

2

2

2

2

2

2

cos

cos

1

cos

sin

cos

1

2

sin

'

sin

cos

1

cos

1

cos

sin

2

cos

sin

'

+

+

+

=

+

+

+

+

=

y

x

 

( )

γ

γ

sin

'

=

r

 

( ) ( )

( )

[

]

( )

[ ]

γ

γ

2

2

2

2

'

'

'

r

r

y

x

+

=

+

 

( ) ( )

(

)

(

)

γ

γ

γ

γ

γ

γ

cos

1

2

cos

cos

2

1

sin

cos

1

sin

'

'

2

2

2

2

2

2

2

+

=

+

+

+

=

+

+

=

+

y

x

 

( )

(

)

4

2

sin

4

2

cos

2

2

cos

2

2

cos

1

2

,

0

0

0

2

0

=

=

=

=

+

=

=

π

π

π

π

γ

γ

γ

γ

γ

γ

γ

d

d

d

dl

y

x

f

L

L

 

Zad.18 

( )

=

γ

γ

3

1

sin

3

3

r

 

( )

( )

=

=

γ

γ

γ

γ

sin

3

1

sin

3

cos

3

1

sin

3

:

3

3

y

x

L

 

( )

( )

γ

γ

γ

γ

γ

sin

3

1

sin

3

cos

3

1

cos

3

1

sin

3

'

3

2

=

x

 

( )

( )

γ

γ

γ

γ

γ

cos

3

1

sin

3

sin

3

1

cos

3

1

sin

3

'

3

2

+

=

y

 

( )

( )

γ

γ

2

2

2

2

'

'

'

r

r

y

x

+

=

+

 

( )

=

γ

γ

γ

3

1

cos

3

1

sin

3

'

2

r

 

=

+

=

+

=

+

γ

γ

γ

γ

γ

γ

3

1

sin

3

1

cos

3

1

sin

9

3

1

sin

3

3

1

cos

3

1

sin

3

'

'

2

2

4

2

3

2

2

2

2

y

x

=

=

γ

γ

3

1

sin

3

3

1

sin

9

2

4

 

( )

( )

π

α

α

α

γ

α

γ

γ

γ

π

π

2

9

sin

9

3

3

1

3

1

sin

3

,

0

2

3

0

2

=

=

=

=

=

=

d

d

d

dl

y

x

f

L

L

 

( )

( ) ( )

( )

( )

( )

( )

( ) ( )

[

]

( )

=

+

=

=

=

=

=

=

=

π

π

π

π

α

α

α

α

α

α

α

α

α

α

α

α

α

0

2

0

0

0

2

cos

cos

sin

cos

cos

'

sin

'

sin

sin

sin

sin

)

d

v

u

v

u

d

d

( )

(

)

( )

( )

2

sin

sin

sin

1

0

0

2

0

2

0

2

π

α

α

α

α

π

α

α

π

π

π

=

=

+

=

d

d

d

 

 

 

 

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

Zad.19 

2

,

1

A

 

11

,

11

B

  

( )

30

,

2

2

y

x

y

x

+

=

ρ

 

+

=

+

=

b

a

b

a

11

11

2

 

 

=

=

4

11

4

3

b

a

 

 

4

11

4

3

+

=

x

y

 

( )

16

9

4

3

'

2

2

=

=

y

 

( )

=

+

=

+

+

=

=

1

11

2

1

11

2

2

16

121

8

33

16

25

24

1

16

9

1

4

3

4

11

30

1

,

dx

x

x

dx

x

x

dl

y

x

M

L

ρ

 

43

1152

49536

1152

16236

33300

384

1452

3960

1152

33300

384

121

384

33

1152

25

1

11

2

3

=

=

+

=

+

+

=

+

=

x

x

x

 

 

Zad.20 

x

y

=

 

2

0

≤ x

 

( )

x

x

y

x

=

,

ρ

 

( )

4

2

2

2

1

1

'

x

x

y

=

=

 

( )

=

+

=

+

=

+

=

=

dx

x

x

dx

x

x

x

x

dx

x

x

x

dl

y

x

M

L

2

0

4

4

2

0

2

4

2

0

1

1

1

1

,

ρ

 

 

Zad.21 

x

e

y

2

=

 

1

0

≤ x

 

( )

2

,

y

y

x

=

ρ

 

( )

(

)

x

x

e

e

y

4

2

2

2

4

2

'

=

=

 

( )

=

=

=

=

+

=

+

=

=

+

4

4

1

5

4

4

4

1

0

4

16

1

16

1

4

1

4

1

,

e

x

x

x

x

L

dt

t

dt

dx

e

t

e

dx

e

e

dl

y

x

M

ρ

 

(

)

+

=

− 3

4

3

4

1

5

24

1

e

 

 

Zad.22 

( )

( )

=

=

=

t

z

t

y

t

x

3

2

sin

4

2

cos

4

  

π

2

0

≤ t

 

(

)

π

ρ

2

1

,

,

t

y

x

+

=

 

( )

( ) ( )

(

)

( )

( )

( )

( ) ( )

(

)

( )

( )

( )

=

=

=

=

=

9

'

2

sin

2

cos

64

2

sin

2

cos

8

'

2

sin

2

cos

64

2

sin

2

cos

8

'

2

2

2

2

2

2

2

2

2

z

t

t

t

t

y

t

t

t

t

x

 

(

)

( ) ( )

=

+

+

=

=

dt

t

t

t

dl

z

y

x

M

L

π

π

ρ

2

0

2

2

2

sin

2

cos

128

9

2

1

,

,

 

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

Zad.23 

2

x

y

=   

1

0

≤ x

 

( ) ( )

2

2

2

4

2

'

x

x

y

=

=

 

( )

12

1

5

4

1

4

1

4

1

4

1

,

3

0

5

1

2

0

2

2

1

0

2

0

0

=

=

=

=

+

=

+

=

=

=

ρ

ρ

ρ

ρ

ρ

dt

t

tdt

xdx

t

x

dx

x

x

xdl

dl

y

x

x

M

L

L

Y

 

 

Zad.24 

( )

t

t

x

sin

=

   

( )

t

y

cos

1

=

   

π

2

0

≤ t

 

( )

( )

(

)

( )

( )

( )

( )

=

+

=

=

t

y

t

t

t

x

2

2

2

2

2

sin

'

cos

cos

2

1

cos

1

'

 

( )

( )

( )

( )

( )

(

)

( )

dt

t

dt

t

dt

t

t

t

dl

y

x

M

L

=

=

+

+

=

=

π

π

π

ρ

ρ

ρ

ρ

2

0

0

2

0

0

2

0

2

2

0

cos

1

2

cos

1

2

sin

cos

cos

2

1

,

( )

( )

(

)

( )

dt

t

t

t

M

dl

y

x

x

M

M

M

x

L

Y

C

cos

1

sin

2

,

1

2

0

0

=

=

=

π

ρ

ρ

 

( )

( )

(

)

( )

dt

t

t

M

dl

y

x

y

M

M

M

y

L

X

C

cos

1

cos

1

2

,

1

2

0

0

=

=

=

π

ρ

ρ

 

 

Zad.25 

( )

( )

=

=

=

t

z

t

y

t

x

sin

cos

   

2

0

π

≤ t

 

( )

( )

( )

( )

( )

=

=

=

1

'

cos

'

sin

'

2

2

2

2

2

z

t

y

t

x

 

(

)

( )

( )

2

2

2

1

cos

sin

,

,

0

2

0

0

2

0

2

2

0

π

ρ

ρ

ρ

ρ

π

π

=

=

+

+

=

=

dt

dt

t

t

dl

z

y

x

M

L

 

(

)

( )

π

ρ

ρ

ρ

π

2

2

cos

2

,

,

1

0

2

0

0

=

=

=

=

=

M

dt

t

M

dl

z

y

x

x

M

M

M

x

L

YZ

C

 

(

)

( )

π

ρ

ρ

ρ

π

2

2

sin

2

,

,

1

0

2

0

0

=

=

=

=

=

M

dt

t

M

dl

z

y

x

x

M

M

M

y

L

YZ

C

 

(

)

( )

8

2

2

2

8

8

2

,

,

1

0

0

2

0

2

2

0

0

π

πρ

ρ

π

ρ

π

ρ

ρ

π

=

=

=

=

=

=

M

dt

t

M

dl

z

y

x

z

M

M

M

z

L

XY

C

 

8

2

,

2

,

2

π

π

π

C

 

 

 

 

background image

Grzegorz Mrzygłocki, WILi , sem. III, gr.2 

Zad.26 

x

e

y

=   

1

0

≤ x

 

(

)

=

+

=

=

dx

e

e

dl

y

z

y

x

I

L

x

x

X

1

0

2

0

2

1

,

,

ρ

ρ

 

 

Zad.27 

=

=

γ

γ

sin

cos

y

x

 

 

+

=

=

x

z

z

2

0

 

( )

( )

γ

γ

2

2

2

2

cos

'

sin

'

=

=

y

x

 

1

sin

(cos

'

'

2

2

2

2

=

+

=

+

γ

γ

y

x

 

(

)

=

+

=

+

=

π

π

π

γ

γ

2

0

4

0

4

cos

2

d

 

 

Zad.28 

=

=

γ

γ

sin

2

cos

2

y

x

   

+

+

=

=

2

2

1

0

y

x

z

z

 

( )

( )

γ

γ

2

2

2

2

cos

4

'

sin

4

'

=

=

y

x

 

2

sin

(cos

4

'

'

2

2

2

2

=

+

=

+

γ

γ

y

x

 

(

)

=

=

+

=

π

π

π

γ

γ

2

0

2

0

20

10

2

4

1

d

d