Zadanie 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z dwóch stawów, w pewnym gospodarstwie rybnym, odłowiono pewną |
|
|
|
|
|
|
|
|
|
|
|
|
|
Lp |
Staw 1 |
Staw 2 |
|
liczbę karpi i zważono je (dane w kg). |
|
|
|
|
|
|
|
|
dwie populacje, parametr: średnia, mała próba, test prawostronny |
|
|
|
|
1. |
1.13 |
0.88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
1.02 |
0.80 |
|
Czy można uważać, na poziomie istotności 0,05, że przeciętna waga karpi |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
1.62 |
0.59 |
|
w stawie 1 jest większa niż w stawie 2? Przyjąć założenie, że wariancje obu populacji są równe. |
|
|
|
|
|
|
|
|
|
|
|
|
|
4. |
2.10 |
1.71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. |
2.13 |
0.72 |
|
|
|
1) |
H0: |
m1=m2 |
|
|
|
|
m1 - srednia waga karpi w stawie pierwszym |
|
|
|
|
6. |
1.89 |
1.33 |
|
|
|
|
H1: |
m1>m2 |
|
|
|
|
x1- średnia waga karpie w stawie pierwszym w wyolosowanej próbie |
|
|
|
|
7. |
1.76 |
1.42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8. |
1.09 |
0.92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9. |
1.54 |
1.86 |
|
|
|
2) |
|
|
|
|
|
|
|
|
|
|
|
10. |
1.67 |
1.95 |
|
|
|
|
|
|
|
|
= |
2.67153783699165 |
|
|
|
|
|
11. |
1.92 |
1.21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12. |
2.07 |
1.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13. |
0.93 |
1.10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14. |
1.26 |
0.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15. |
1.53 |
1.87 |
|
|
|
obliczenia pomocnicze: |
|
|
|
Staw 1 |
Staw 2 |
|
|
|
|
|
|
16. |
1.51 |
0.91 |
|
|
|
|
|
średnia próby = |
|
1.55 |
1.22 |
|
|
|
|
|
|
17. |
1.60 |
0.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18. |
1.35 |
1.43 |
|
|
|
|
|
liczebność próby = |
|
30 |
26 |
|
|
|
|
|
|
19. |
1.46 |
2.51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20. |
1.05 |
0.13 |
|
|
|
|
|
wariancja próby (nieobc.) = |
|
0.125404712643678 |
0.324421538461538 |
|
|
|
|
|
|
21. |
2.03 |
1.74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22. |
1.61 |
0.11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23. |
1.01 |
1.67 |
|
|
|
3) |
t kryt |
1.67356490635216 |
|
|
|
|
|
|
|
|
|
24. |
1.28 |
1.08 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25. |
1.53 |
1.14 |
|
|
|
4) |
|
|
|
|
|
|
|
|
|
|
|
26. |
1.70 |
1.79 |
|
|
|
|
porównujemy |
t kryt |
z |
t obl |
|
|
|
|
|
|
|
27. |
2.03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28. |
1.38 |
|
|
|
|
5) |
WNIOSEK: |
Wartość empityczna statystyki testowej (2,67) znajduje się w obszarze krytycznym. |
|
|
|
|
|
|
|
|
|
29. |
1.52 |
|
|
|
|
|
|
A wobec tego odrzucam Ho na rzecz H1. |
|
|
|
|
|
|
|
|
|
30. |
1.85 |
|
|
|
|
|
|
Średnia waga karpi w stawie pierwszym jest większa od średniej wagi karpii w stawie drugim. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp.: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H0: |
m1 = m2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H1: |
m1 > m2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t obl = |
2.67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t kryt = |
1.67 |
Ho odrzucamy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zadanie 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pobrano dwie próby losowe z populacji gospodarstw rolniczych w dwóch makroregionach A i B. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dane poniżej przedstawiają powierzchnię użytków rolnych ( w ha) w wylosowanych do badań gospodarstwach. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lp |
Makroreg A |
Makroreg B |
|
Przyjmując poziom istotności równy 0,10 zweryfikować hipotezę: |
|
|
|
|
|
|
|
|
|
|
|
1. |
1.02 |
0.98 |
|
Odchylenia standardowe powierzchni użytków rolnych w obu makroregionach są równe. |
|
|
|
|
|
|
|
|
|
|
|
2. |
1.97 |
1.07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
14.6 |
1.09 |
|
|
|
|
|
|
|
|
dwie populacje, paramert: ochylenie standardowe, test dwustronny |
|
|
|
|
4. |
2.71 |
1.23 |
|
1) |
H0: |
sigma 1 = sigma 2 |
|
|
|
|
|
|
|
|
|
5. |
3.77 |
1.34 |
|
|
H1: |
sigma 1<> sigma 2 |
|
|
|
|
|
|
|
|
|
6. |
6.02 |
1.35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7. |
6.72 |
1.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8. |
6.55 |
1.52 |
|
2) |
|
|
|
|
|
|
|
|
|
|
9. |
6.85 |
2.06 |
|
|
|
|
|
|
|
|
|
|
|
|
10. |
7.72 |
2.78 |
|
|
|
|
|
|
|
|
|
|
|
|
11. |
8 |
2.86 |
|
|
F obl = |
0.467087478495284 |
|
|
|
|
|
|
|
|
|
12. |
8.15 |
3.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13. |
9.31 |
3.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14. |
9.89 |
4.27 |
|
obliczenia pomocnicze: |
|
|
|
Makroreg A |
Makroreg B |
|
|
|
|
|
|
15. |
0.36 |
5.85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16. |
1.65 |
7.65 |
|
|
|
wariancja próby (nieobc.) = |
|
15.1442510443935 |
32.422729663361 |
|
|
|
|
|
|
17. |
1.97 |
7.93 |
|
|
|
|
|
192 |
244 |
|
|
|
|
|
|
18. |
2.05 |
8.43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19. |
2.93 |
8.68 |
|
3) |
F kryt |
0.796752517415942 |
1.25067406611015 |
|
|
|
|
|
|
|
|
20. |
3.03 |
9.72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21. |
3.55 |
9.53 |
|
4) |
|
|
|
|
|
|
|
|
|
|
|
22. |
3.51 |
16.19 |
|
|
porównujemy |
F kryt |
z |
F obl |
|
|
|
|
|
|
|
23. |
4.11 |
18.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24. |
4.47 |
15.39 |
|
5) |
WNIOSEK: |
Wartosc epmiryczna statystyki testowej (0,47) znajduej się w obszarze krytycznym. |
|
|
|
|
|
|
|
|
|
25. |
4.52 |
17.3 |
|
|
|
Odrzucamy H0 na rzecz H1. |
|
|
|
|
|
|
|
|
|
26. |
4.64 |
1.97 |
|
|
|
Odchylenie standardowe powierzchni użytków rolnych w markoregionie A i B sa różne od siebie. |
|
|
|
|
|
|
|
|
|
27. |
4.64 |
2.01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
28. |
5.01 |
3.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29. |
5.06 |
6.09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30. |
5.25 |
7.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31. |
5.31 |
8.82 |
|
Odp.: |
|
|
|
|
|
|
|
|
|
|
|
32. |
5.52 |
12.72 |
|
- przy H1 dwustronnej: |
|
|
|
|
|
|
|
|
|
|
|
33. |
5.94 |
15.72 |
|
Ho: |
σ1 = σ2 |
|
|
|
|
|
|
|
|
|
|
34. |
5.97 |
20.94 |
|
H1: |
σ1 ≠ σ2 |
|
|
|
|
|
|
|
|
|
|
35. |
5.89 |
27.89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
36. |
6.01 |
1.02 |
|
|
Fobl = |
0.47 |
|
|
|
|
|
|
|
|
|
37. |
6.21 |
0.99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
38. |
6.22 |
1.09 |
|
|
Fkryt (1) = |
0.80 |
|
|
|
|
|
|
|
|
|
39. |
5.09 |
1.02 |
|
|
Fkryt (2) = |
1.25 |
|
|
|
|
|
|
|
|
|
40. |
6.47 |
0.58 |
|
Zbiór krytyczny: [0; 0,80] U [1,25; +∞) |
|
|
|
|
|
|
|
|
|
|
|
41. |
6.89 |
1.36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42. |
6 |
1.68 |
|
Fobl należy do zbioru krytycznego, więc |
|
|
|
|
|
|
|
|
|
|
|
43. |
7.07 |
1.97 |
|
Ho odrzucamy i przyjmujemy H1 |
|
|
|
|
|
|
|
|
|
|
|
44. |
6.61 |
2.07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45. |
7.67 |
2.22 |
|
- przy H1 lewostronnej: |
|
|
|
|
|
|
|
|
|
|
|
46. |
7.68 |
2.52 |
|
Ho: |
σ1 = σ2 |
|
|
|
|
|
|
|
|
|
|
47. |
9.68 |
2.8 |
|
H1: |
σ1 < σ2 |
|
|
|
|
|
|
|
|
|
|
48. |
8.8 |
3.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49. |
1.53 |
3.07 |
|
|
Fobl = |
0.47 |
|
|
|
|
|
|
|
|
|
50. |
1.63 |
3.48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
51. |
1.72 |
3.71 |
|
|
Fkryt = |
0.84 |
|
|
|
|
|
|
|
|
|
52. |
1.97 |
3.13 |
|
Zbiór krytyczny: [0; 0,84] |
|
|
|
|
|
|
|
|
|
|
|
53. |
2.72 |
3.14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
54. |
2.4 |
3.77 |
|
Fobl należy do zbioru krytycznego, więc |
|
|
|
|
|
|
|
|
|
|
|
55. |
2.81 |
3.71 |
|
Ho odrzucamy i przyjmujemy H1 |
|
|
|
|
|
|
|
|
|
|
|
56. |
3.02 |
2.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57. |
3.02 |
5.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
58. |
3.5 |
4.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59. |
4.17 |
5.14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60. |
4.64 |
4.59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61. |
5.02 |
6.14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62. |
5.31 |
6.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63. |
5.32 |
7.52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64. |
6.1 |
6.85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
65. |
5.88 |
6.56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
66. |
6.97 |
6.57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
67. |
6.85 |
8.18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68. |
13.42 |
7.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69. |
17.25 |
8.64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
70. |
3.65 |
7.21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
71. |
4.38 |
6.93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
72. |
9.6 |
6.86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
73. |
9.84 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
74. |
11.52 |
8.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75. |
10.52 |
10.14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76. |
11.47 |
9.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
77. |
10.64 |
11.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
78. |
10.86 |
10.14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79. |
19.11 |
11.46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80. |
17.66 |
11.34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81. |
7.48 |
12.85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
82. |
3.27 |
2.35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
83. |
2.97 |
3.77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84. |
5.93 |
3.43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
85. |
6.51 |
5.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86. |
10.63 |
6.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
87. |
10.18 |
6.8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88. |
11.59 |
6.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
89. |
1.56 |
7.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
90. |
5.22 |
6.93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91. |
2.22 |
7.77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
92. |
3.64 |
7.28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93. |
4.05 |
8.77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
94. |
4.47 |
9.17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
95. |
4.97 |
9.93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
96. |
4.75 |
10.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
97. |
5.55 |
10.8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98. |
5.63 |
10.92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
99. |
5.76 |
11.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100. |
6.52 |
13.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
101. |
7.14 |
14.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102. |
8.17 |
15.39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
103. |
6.78 |
18.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104. |
9.27 |
1.26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
105. |
9.18 |
1.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106. |
10.3 |
2.39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
107. |
11.97 |
2.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
108. |
21.07 |
3.43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
109. |
2.11 |
4.53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
110. |
4.63 |
5.06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
111. |
6.14 |
6.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
112. |
6.01 |
6.26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
113. |
6.65 |
6.71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
114. |
6.8 |
6.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
115. |
6.97 |
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
116. |
7.34 |
7.36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
117. |
7.61 |
8.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
118. |
10.59 |
8.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
119. |
14.43 |
8.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
120. |
15.52 |
14.31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
121. |
13.8 |
15.03 |
|
|
|
|
|
|
|
|
|
|
|
|
|
122. |
1.51 |
16.05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
123. |
1.27 |
0.87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
124. |
1.76 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125. |
3.44 |
1.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
126. |
2.39 |
1.06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
127. |
4.09 |
1.15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
128. |
4.15 |
1.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
129. |
4.46 |
1.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
130. |
4.77 |
1.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
131. |
4.97 |
1.35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
132. |
6.52 |
1.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
133. |
7.26 |
1.53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
134. |
8.22 |
1.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
135. |
7.43 |
1.71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
136. |
9.34 |
1.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
137. |
11.05 |
1.64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
138. |
13.21 |
3.19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139. |
19.82 |
9.35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
140. |
10.86 |
11.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
141. |
2.57 |
21.41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
142. |
3.23 |
16.96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
143. |
3.42 |
2.17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144. |
3.69 |
7.15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
145. |
3.85 |
7.55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
146. |
5.03 |
10.15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
147. |
5.18 |
10.68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
148. |
5.14 |
11.89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
149. |
6.47 |
12.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
150. |
6.97 |
12.06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
151. |
7.22 |
12.43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
152. |
8.77 |
13.53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
153. |
10.15 |
12.68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
154. |
1.06 |
13.89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
155. |
1.13 |
14.05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
156. |
1.81 |
14.59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
157. |
2.42 |
16.28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
158. |
2.43 |
16.69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
159. |
2.6 |
12.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
160. |
3.64 |
18.14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
161. |
3.84 |
18.75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
162. |
3.13 |
13.64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
163. |
4.76 |
2.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
164. |
8.43 |
10.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
165. |
8.9 |
12.39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
166. |
4.84 |
12.84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
167. |
21.05 |
31.44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
168. |
6.31 |
27.13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
169. |
1.07 |
1.06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
170. |
0.43 |
0.88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
171. |
1.89 |
1.73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
172. |
2.22 |
1.93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
173. |
2.25 |
1.97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
174. |
2.57 |
4.84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
175. |
1.81 |
5.82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
176. |
4.36 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
177. |
7.72 |
7.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
178. |
5.94 |
6.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
179. |
8.8 |
9.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
180. |
2.56 |
9.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
181. |
3.81 |
5.89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
182. |
4.39 |
11.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
183. |
4.32 |
11.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
184. |
5.02 |
11.76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
185. |
4.9 |
12.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
186. |
6.1 |
14.07 |
|
|
|
|
|
|
|
|
|
|
|
|
|
187. |
5.39 |
14.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
188. |
6.47 |
14.71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
189. |
5.4 |
16.17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
190. |
6.73 |
24.69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
191. |
9.1 |
2.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
192. |
13.18 |
3.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
193. |
|
4.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
194. |
|
4.42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
195. |
|
4.72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
196. |
|
6.15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
197. |
|
6.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
198. |
|
6.68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
199. |
|
7.86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
200. |
|
8.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
201. |
|
8.71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
202. |
|
8.72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
203. |
|
9.72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
204. |
|
10.02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
205. |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
206. |
|
11.92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
207. |
|
11.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
208. |
|
13.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
209. |
|
13.42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
210. |
|
15.01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
211. |
|
15.09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
212. |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
213. |
|
16.66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
214. |
|
20.27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
215. |
|
1.61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
216. |
|
1.77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
217. |
|
2.4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
218. |
|
3.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
219. |
|
4.6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
220. |
|
4.72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
221. |
|
4.85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
222. |
|
5.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
223. |
|
6.75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
224. |
|
7.86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
225. |
|
8.39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
226. |
|
9.1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
227. |
|
9.18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
228. |
|
8.52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
229. |
|
10.23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
230. |
|
9.46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
231. |
|
12.18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
232. |
|
13.96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
233. |
|
17.61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
234. |
|
20.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
235. |
|
6.51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
236. |
|
1.72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
237. |
|
2.97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
238. |
|
3.64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
239. |
|
4.38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
240. |
|
8.68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
241. |
|
10.31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
242. |
|
11.01 |
|
|
|
|
|
|
|
|
|
|
|
|
|
243. |
|
11.39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
244. |
|
20.22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Zadanie 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z dwóch stawów, w pewnym gospodarstwie rybnym, odłowiono pewną |
|
|
|
|
|
|
|
|
|
|
Lp |
Staw 1 |
Staw 2 |
|
liczbę karpi i zważono je (dane w kg). |
|
|
|
|
|
|
|
|
|
|
1. |
1.13 |
0.88 |
|
|
|
|
|
|
|
|
|
dwie populacje, odchylenie standadrowe, test dwustronny, mala próba |
|
|
2. |
1.02 |
0.80 |
|
Na poziomie istotności 0,05 zweryfikować hipotezę, że odchylenia standardowe |
|
|
|
|
|
|
|
|
|
|
3. |
1.62 |
0.59 |
|
wagi karpi w obydwu stawach są równe. |
|
|
|
|
|
|
|
|
|
|
4. |
2.10 |
1.71 |
|
|
|
|
|
|
|
|
Ho: sigma1=sigma2 |
|
H1:sigma1<>sigma2 |
|
5. |
2.13 |
0.72 |
|
|
|
|
|
|
|
|
|
|
|
|
6. |
1.89 |
1.33 |
|
Odp.: |
|
|
|
|
|
|
odchylenie standardowe: |
|
|
|
7. |
1.76 |
1.42 |
|
- przy H1 dwustronnej: |
|
|
|
|
|
|
|
1 |
2 |
|
8. |
1.09 |
0.92 |
|
Ho: |
σ1 = σ2 |
|
|
|
|
|
|
0.466725546738243 |
0.494195425161111 |
|
9. |
1.54 |
1.86 |
|
H1: |
σ1 ≠ σ2 |
|
|
|
|
|
|
86 |
77 |
|
10. |
1.67 |
1.95 |
|
|
|
|
|
|
|
|
|
Fobl= |
0.944414947965348 |
|
11. |
1.92 |
1.21 |
|
|
Fobl = |
0.89 |
|
|
|
|
|
|
|
|
12. |
2.07 |
1.22 |
|
|
|
|
|
|
|
|
|
|
|
|
13. |
0.93 |
1.10 |
|
|
Fkryt (1) = |
0.65 |
|
|
|
|
Fkryt= |
0.645346912853621 |
Fkryt= |
1.55808765326723 |
14. |
1.26 |
0.78 |
|
|
Fkryt (2) = |
1.56 |
|
|
|
|
|
|
|
|
15. |
1.53 |
1.87 |
|
Zbiór krytyczny: [0; 0,65] U [1,56; +∞) |
|
|
|
|
|
|
obszary kryt: [0;0,65] u [1,55;+niesk) |
|
|
|
16. |
1.51 |
0.91 |
|
|
|
|
|
|
|
|
|
|
|
|
17. |
1.60 |
0.81 |
|
Fobl nie należy do zbioru krytycznego, więc |
|
|
|
|
|
|
Interpretacja: |
wartosc epmiryczna statystyki testowej (0,94) znajduje się w obszarze kceptacji. |
|
|
18. |
1.35 |
1.43 |
|
brak podstaw do odrzucenia Ho |
|
|
|
|
|
|
Wobec tego przyjmujemy ho. |
|
|
|
19. |
1.46 |
2.51 |
|
|
|
|
|
|
|
|
|
|
|
|
20. |
1.05 |
0.13 |
|
|
|
|
|
|
|
|
|
|
|
|
21. |
2.03 |
1.74 |
|
|
|
|
|
|
|
|
|
|
|
|
22. |
1.61 |
0.11 |
|
|
|
|
|
|
|
|
|
|
|
|
23. |
1.01 |
1.67 |
|
|
|
|
|
|
|
|
|
|
|
|
24. |
1.28 |
1.08 |
|
|
|
|
|
|
|
|
|
|
|
|
25. |
1.53 |
1.14 |
|
|
|
|
|
|
|
|
|
|
|
|
26. |
1.70 |
1.79 |
|
|
|
|
|
|
|
|
|
|
|
|
27. |
2.03 |
1.54 |
|
|
|
|
|
|
|
|
|
|
|
|
28. |
1.38 |
1.73 |
|
|
|
|
|
|
|
|
|
|
|
|
29. |
1.52 |
1.32 |
|
|
|
|
|
|
|
|
|
|
|
|
30. |
1.85 |
1.48 |
|
|
|
|
|
|
|
|
|
|
|
|
31. |
1.14 |
1.03 |
|
|
|
|
|
|
|
|
|
|
|
|
32. |
2.40 |
1.47 |
|
|
|
|
|
|
|
|
|
|
|
|
33. |
1.45 |
1.95 |
|
|
|
|
|
|
|
|
|
|
|
|
34. |
1.33 |
1.36 |
|
|
|
|
|
|
|
|
|
|
|
|
35. |
2.31 |
1.82 |
|
|
|
|
|
|
|
|
|
|
|
|
36. |
1.34 |
0.90 |
|
|
|
|
|
|
|
|
|
|
|
|
37. |
1.52 |
1.42 |
|
|
|
|
|
|
|
|
|
|
|
|
38. |
1.88 |
0.74 |
|
|
|
|
|
|
|
|
|
|
|
|
39. |
1.93 |
1.00 |
|
|
|
|
|
|
|
|
|
|
|
|
40. |
1.40 |
2.28 |
|
|
|
|
|
|
|
|
|
|
|
|
41. |
1.91 |
1.75 |
|
|
|
|
|
|
|
|
|
|
|
|
42. |
2.84 |
0.40 |
|
|
|
|
|
|
|
|
|
|
|
|
43. |
1.50 |
1.53 |
|
|
|
|
|
|
|
|
|
|
|
|
44. |
1.24 |
1.68 |
|
|
|
|
|
|
|
|
|
|
|
|
45. |
1.15 |
1.45 |
|
|
|
|
|
|
|
|
|
|
|
|
46. |
0.97 |
1.08 |
|
|
|
|
|
|
|
|
|
|
|
|
47. |
0.58 |
1.02 |
|
|
|
|
|
|
|
|
|
|
|
|
48. |
1.26 |
0.95 |
|
|
|
|
|
|
|
|
|
|
|
|
49. |
1.40 |
0.76 |
|
|
|
|
|
|
|
|
|
|
|
|
50. |
1.44 |
0.92 |
|
|
|
|
|
|
|
|
|
|
|
|
51. |
0.70 |
1.50 |
|
|
|
|
|
|
|
|
|
|
|
|
52. |
2.00 |
1.15 |
|
|
|
|
|
|
|
|
|
|
|
|
53. |
1.67 |
1.22 |
|
|
|
|
|
|
|
|
|
|
|
|
54. |
2.09 |
1.56 |
|
|
|
|
|
|
|
|
|
|
|
|
55. |
1.41 |
1.50 |
|
|
|
|
|
|
|
|
|
|
|
|
56. |
1.55 |
1.79 |
|
|
|
|
|
|
|
|
|
|
|
|
57. |
0.69 |
1.59 |
|
|
|
|
|
|
|
|
|
|
|
|
58. |
1.20 |
0.75 |
|
|
|
|
|
|
|
|
|
|
|
|
59. |
1.60 |
1.66 |
|
|
|
|
|
|
|
|
|
|
|
|
60. |
1.67 |
0.74 |
|
|
|
|
|
|
|
|
|
|
|
|
61. |
2.20 |
1.84 |
|
|
|
|
|
|
|
|
|
|
|
|
62. |
1.94 |
0.28 |
|
|
|
|
|
|
|
|
|
|
|
|
63. |
2.03 |
0.89 |
|
|
|
|
|
|
|
|
|
|
|
|
64. |
1.49 |
1.68 |
|
|
|
|
|
|
|
|
|
|
|
|
65. |
1.56 |
1.33 |
|
|
|
|
|
|
|
|
|
|
|
|
66. |
1.75 |
1.44 |
|
|
|
|
|
|
|
|
|
|
|
|
67. |
0.64 |
1.61 |
|
|
|
|
|
|
|
|
|
|
|
|
68. |
1.98 |
0.96 |
|
|
|
|
|
|
|
|
|
|
|
|
69. |
1.22 |
1.12 |
|
|
|
|
|
|
|
|
|
|
|
|
70. |
1.43 |
1.25 |
|
|
|
|
|
|
|
|
|
|
|
|
71. |
1.50 |
1.21 |
|
|
|
|
|
|
|
|
|
|
|
|
72. |
0.98 |
1.78 |
|
|
|
|
|
|
|
|
|
|
|
|
73. |
1.63 |
1.41 |
|
|
|
|
|
|
|
|
|
|
|
|
74. |
1.01 |
2.80 |
|
|
|
|
|
|
|
|
|
|
|
|
75. |
1.28 |
1.10 |
|
|
|
|
|
|
|
|
|
|
|
|
76. |
0.91 |
1.49 |
|
|
|
|
|
|
|
|
|
|
|
|
77. |
1.09 |
1.42 |
|
|
|
|
|
|
|
|
|
|
|
|
78. |
2.59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79. |
0.71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80. |
1.26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81. |
2.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
82. |
1.92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
83. |
1.54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84. |
1.18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
85. |
1.09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86. |
2.82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Zadanie 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Spośród pracowników pewnego przedsiębiorstwa wylosowano niezależnie 16 pracowników fizycznych i 9 pracowników umysłowych. Otrzymano następujące dane dotyczące stażu pracy (w latach): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lp |
Pracownicy fizyczni |
Pracownicy umysłowi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. |
37 |
34 |
|
|
Wadomo, że rozkład stażu pracy w przedsiębiorstwie jest normalny. Na przyjętym poziomie istotności zweryfikować następujące hipotezy |
|
|
|
|
|
|
2. |
0 |
17 |
|
|
|
|
|
|
|
|
3. |
5 |
17 |
|
|
|
|
|
|
|
|
4. |
0 |
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. |
2 |
32 |
|
|
a) średni staż pracy wśród pracowników fizycznych jest dłuższy niż 8 lat (przyjąć α=0,02) |
|
|
|
|
|
|
|
jedna próba, średnia, mała próba, test prawostronny |
|
|
|
6. |
24 |
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7. |
4 |
26 |
|
|
b) zróżnicowanie stażu pracy jest większe wśród pracowników fizycznych niż umysłowych (przyjąć α=0,01) |
|
|
|
|
|
|
|
|
|
dwie próby, wariancja, mała próba, test prawostronny |
|
8. |
0 |
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9. |
5 |
29 |
|
|
c) średni staż pracy wśród pracowników fizycznych jest krótszy niż wśród pracowników umysłowych (przyjąć α=0,04) |
|
|
|
|
|
|
|
|
|
|
dwie róby, średnia, test lewostronny, mala próba |
10. |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11. |
19 |
|
|
|
d) odchylenie standardowe stażu pracy wśród pracowników umysłowych przekracza 6 lat (przyjąć α=0,1) |
|
|
|
|
|
|
|
|
|
jedna próba, odchylenie standardowe, test prawostronny |
|
12. |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13. |
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14. |
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15. |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16. |
2 |
40.9444444444445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.39878460681749 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A) |
średnia próby: |
9.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ODCHYLENIE PRÓBY |
10.8842393701474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N1 |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HO: M1=8 |
H1=M1>8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tobl |
0.459379827102451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t kryt |
2.24854029161066 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obszar kryt: (2,24; + niesk) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Interpretacja: wartość empiryczna statystyki testowej (0,45) znajduje się wobszrze akceptacji. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wobec tego przyjmujemy hipoteze Ho. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B) |
b) zróżnicowanie stażu pracy jest większe wśród pracowników fizycznych niż umysłowych (przyjąć α=0,01) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Srednia proby 1 |
|
9.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia próby 2 |
|
26.7777777777778 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja 1 |
|
118.466666666667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja 2 |
|
40.9444444444445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n1 |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n2 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho |
sigma1=sigma2 |
|
h1 |
sigma1<>sigma2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fobl |
2.89335142469471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fkryt= |
5.5151248396996 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obszar kryt: |
(5,51; + niesk) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Interpretacja: Wartość empiryczna statystyki testowej (2,89) znajduje się w obszarze aakceptacji. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wobec tego przyjmyjemy ho. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) średni staż pracy wśród pracowników fizycznych jest krótszy niż wśród pracowników umysłowych (przyjąć α=0,04) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Srednia proby 1 |
|
9.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia próby 2 |
|
26.7777777777778 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja 1 |
|
118.466666666667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja 2 |
|
40.9444444444445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho |
sigma1=sigma2 |
|
h1 |
sigma1<sigma2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tobl: |
-4.39766173692814 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tkryt |
-1.83156661943834 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obszar kryt: (- niesk; -1,83) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Interpretacja: wartość empiryczna statystyki testowej (-4,39) znajduje się w pobszarze krytycznym, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wobec tego odrzucamy ho na rzecz H1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Na poziomie istotnosci 0,04 możemy stwierdzić, że średni staż pracy pracowników fizycznych ejst którzy niż umysłowych. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D) |
d) odchylenie standardowe stażu pracy wśród pracowników umysłowych przekracza 6 lat (przyjąć α=0,1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
śrendni próby 2 |
26.7777777777778 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
odchylenie 2 |
6.39878460681749 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ho |
sima^2=6 |
|
h1 |
sigma^2>6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chi kwadrat obl |
8.53171280908999 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chi kwadrat kryt: |
13.3615661365117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obszar kryt: (13,36;+ niesk) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Interpretacja: wartość empiryczna statystyki testowej (8,53) znjduje się w obszare akceptacji. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wobec tego przyjmujemy ho. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp.: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a) |
|
Ho: |
mi1 = 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H1: |
mi1 > 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia próby1 = |
9.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
odchylenie próby1 = |
10.88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n1 = |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tobl = |
0.46 |
|
Brak podstaw do odrzucenia Ho |
|
|
|
|
|
|
|
|
|
|
|
|
|
tkryt = |
2.25 |
|
Na poziomie istotności 0,02 możemy twierdzić, że |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średni staż pracy wśród pracowników fizycznych jest równy 8 lat |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b) |
|
Ho: |
σ1 = σ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H1: |
σ1 > σ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja próby1 = |
118.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja próby2 = |
40.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n1 = |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n2 = |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fobl = |
2.89 |
|
Brak podstaw do odrzucenia Ho |
|
|
|
|
|
|
|
|
|
|
|
|
|
Fkryt = |
5.52 |
|
Na poziomie istotności 0,01 możemy twierdzić, że |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zróżnicowanie stażu pracy jest jednakowe w obydwu grupach pracowników |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c) |
|
Ho: |
mi1 = mi2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H1: |
mi1 < mi2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia próby1 = |
9.25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średnia próby2 = |
26.78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja próby1 = |
118.47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wariancja próby2 = |
40.94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n1 = |
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n2 = |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tobl = |
-4.40 |
|
Ho odrzucamy |
|
|
|
|
|
|
|
|
|
|
|
|
|
tkryt = |
-1.83 |
|
Na poziomie istotności 0,04 możemy twierdzić, że |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
średni staż pracy pracowników fizycznych jest mniejszy niż umysłowych |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d) |
|
Ho: |
σ1 = 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H1: |
σ1 > 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n2 = |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chi-kwadrat obl = |
9.10 |
|
Brak podstaw do odrzucenia Ho |
|
|
|
|
|
|
|
|
|
|
|
|
|
chi-kwadrat kryt = |
13.36 |
|
Na poziomie istotności 0,1 możemy twierdzić, że |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
odchylenie standardowe stażu pracy wśród pracowników umysłowych równe jest 6 lat |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|