background image

572 

Journal of Basic Microbiology 2011, 51, 572 – 579 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Review 

Cellulases from psychrophilic microorganisms: a review 

Ramesh C. Kasana and Arvind Gulati 

Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research,  
Palampur (HP), India 

Cellulases are hydrolytic enzymes that catalyze total hydrolysis of cellulose into sugars. 
Cellulases are produced by various groups of microorganisms and animals; however, psychro-
philes are the ideal candidates for the production of enzymes active at low temperature and 
stable under alkaline conditions, in the presence of oxidants and detergents, which are in large 
demand as laundry additives. The cellulases from psychrophiles also find application in 
environmental bioremediation, food industry and molecular biology. Research work on 
cellulase has been done over the last six decades, but there is no exclusive review available on 
the cellulases from psychrophiles. This review is an attempt to fill this gap by providing all the 
relevant information exclusively for cellulases from psychrophiles, with a focus on the present 
status of knowledge on their activity, molecular characteristics, gene cloning, statistical expe-
rimental designs, crystal structure, and strategies for the improvement of psychrophilic cel-
lulases. 

Keywords: Cellulase / Detergents / Characterization / Crystal structure / Improvement / Psychrophiles 

Received: September 24, 2010; accepted: November 20, 2010 

DOI 10.1002/jobm.201000385 

Introduction

*

 

The major part of the earth’s surface provides conditions 
that are extreme due to one or the other environmental 
factor. These extreme environments, which are detri-
mental to higher life forms, are generally inhabited by 
microorganisms able to grow and survive under these 
harsh conditions. Low temperature is very common 
among the extreme environments, both natural and 
man-made. These low-temperature environments are 
inhabited by the cold-adapted microorganisms known 
as psychrophiles. In the past couple of decades, it has 
been recognized that cold-adapted microorganisms pro-
vide a broad biotechnological potential, offering nu-
merous economic and ecological advantages over the 
use of those organisms and their respective enzymes 
that operate at higher temperatures [25, 28]. 
  Cellulose, which is one of the most abundant carbo-
hydrates produced by plants, provides the major re-
newable energy source on the planet Earth. Its turnover, 

                               
Correspondence: Ramesh Chand Kasana, Institute of Himalayan Bio-
resource Technology (CSIR), Palampur-176061, India 
E-mail: rkasana@ihbt.res.in, rameshkasana@yahoo.co.in 
Fax: +91-1894-230433

 

therefore, plays an important role in the global carbon 
cycle for all living organisms. Cellulose synthesis and 
recycling in the cold environments account for a large 
proportion of the carbon cycle because approximately 
80% of the biosphere and more than 90% of the marine 
environments have temperatures lower than 5 °C. In 
natural environments, the degradation of cellulose is 
mainly carried out by cellulases produced by various 
bacteria and fungi [11–13, 38]. Natural sources of cellu-
lases generally contain at least three groups of cellu-
lolytic activities, including endoglucanase, β-1,4-cello-
biohydrolase, and β-glucosidase. The cold-active enzy-
mes are becoming more attractive compared to their 
mesophilic counterparts because of their potential in-
dustrial applications, and they represent the lower 
natural limits of protein stability. These enzymes are 
useful tools for studies in the field of protein folding 
[9]. A large number of cold-active enzymes have been 
isolated from the psychrophiles, but the cold-active 
cellulases are short of study up to now. 

Psychrophiles with cellulase activity 
Organisms growing at low temperature have been 
known for a long time. The term psychrophile was first 

background image

Journal of Basic Microbiology 2011, 51, 572 – 579 

Cellulases from psychrophilic microorganisms 

573 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

used by Schmidt-Nielson for microorganisms that are 
able to grow and multiply at 0 °C [35]. According to 
Morita [29], psychrophiles are microorganisms that 
show optimal growth at or below 15 °C, maximal 
growth at or below 20 °C, and minimal growth at or 
below 0 °C. However, the microorganisms that grow at 
or below 5 °C but show optimal growth at or above 
20 °C have been defined as psychrotrophs. Since psy-
chrotrophs are facultative psychrophiles, the term psy-
chrophiles in this review includes both true and facul-
tative psychrophiles. The psychrophilic microorganisms 
are not restricted to cold environments, but are distrib-
uted over almost all kinds of environments. Cellulase-
producing psychrotrophic microorganisms have been 
isolated from various environments. 
  In 1996, the first report on a low-temperature-active 
cellulase produced by the fungus Acremonium alcalophi-
lum
 of soil origin had appeared [16], followed by the 
isolation and purification of endo-β-glucanase from the 
psychrophilic yeast Rhodotorula glutinis of soil origin [32]. 
Subsequently, cellulase-producing psychrophiles be-
longing to different bacterial and fungal genera have 
been isolated and characterized. The various psychro-
trophic microorganisms producing cellulase are listed 
in Table 1. 
  Microbial enzymes are often more useful than en-
zymes from plants and animals because of the great 
variety of catalytic activities available, higher yields, 
possible ease of genetic manipulation, regular supply 

 

Table 1. Cellulase-producing psychrophiles. 

Isolate identification 

Source 

Reference

Acremonium alcalophilum 

Soil [16] 

Arthrobacter sp. 

Signy Island 

[5] 

Cadophora malorum, Cladosporium 

cladosporioidesCladosporium sp. 

Wood and swab  [7] 

Chryseomonas luteola 

Celeriac (Apium 

graveolens

[26] 

Clostridium sp. 

Cattle manure 

digester 

[3] 

Coprinus psychromorbidus 

 [22] 

Fibrobacter succinogenes Rumen [24] 

Flavobacterium sp. 

Soil sample 

[34] 

Geomyces sp. 

Wood and swab  [7] 

Paenibacillus sp. 

Mud samples 

[36] 

Pedobacter sp. 

Dirt sample 

[34] 

Penicillium chrysogenum 

Yellow Sea 

[17] 

Penicillium expansumPenicillium 

roquefortiiPenicillium sp. 

Wood and swab  [7] 

Pseudoalteromonas haloplanktis 

 [44] 

Pseudoalteromonas sp. 

Mud [48] 

Pseudoalteromonas sp. 

Sea sediment 

[49] 

Rhodotorula glutinis 

Soil [32] 

Shewanella sp. G5 

Munida  

subrrugosa 

[6] 

due to the absence of seasonal fluctuations, and the 
rapid growth of microorganisms on economical media. 
Microbial enzymes are also more stable than their cor-
responding plant and animal enzymes, and their pro-
duction is relatively more convenient and safer [47]. 
Cold-adapted microbial strains have been isolated most-
ly from the antarctic and polar regions, which repre-
sent permanently cold environments. Other potential 
sources of cold-active cellulases are the mud and deep-
sea sediment microorganisms. A Clostridium strain iso-
lated from a cold-adapted manure biogas digester was 
able to grow at temperatures as low as 5 °C and as high 
as 50 °C [3], whereas the CMCase produced by the fun-
gus Acremonium alcalophilum was active even at 0 °C [16]. 
We have isolated cellulose-producing psychrotrophic 
bacteria belonging to the genera Paenibacillus and Pseu-
domonas
 from the cold environments in the Western 
Himalaya (Fig. 1). 
 

 

Figure 1.  Cellulase production by bacteria belonging to the genera 
Paenibacillus and Pseudomonas

Basic properties of cellulases from psychrotrophs 
In the last one and a half decade, psychrotrophic mi-
croorganisms belonging to various groups have been 
screened for cellulase production, purification, and char-
acterization. But the information is scanty on the puri-
fication and characterization of cellulases from psy-
chrotrophs. The first report on the characterization of a 
low-temperature-active cellulase appeared in year 1996 
for  Acremonium alcalophilum [16]. The cellulase of Acre-
monium
  alcalophilum showed maximal activity at 40 °C 
and pH 7.0, the enzyme was cold active, retaining more 
than 20% activity even at 0 °C [16]. Subsequently cellu-
lases have been isolated and characterized from differ-
ent psychrophilic microorganisms. The optimum tem-
perature for their activity generally ranges from 20  
to 40 °C (Table 2), with one study reporting a higher 

background image

574 

R. C. Kasana and A. Gulati 

Journal of Basic Microbiology 2011, 51, 572 – 579 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

optimum temperature for activity (50 °C) by a cellu- 
lase from the psychrotrophic yeast Rhodotorula glutinis 
[32]. As is clear from Table 2, most of the cellulases 
produced by psychrophilic microorganisms showed 
optimum activity in the acidic to neutral pH range  
(pH 4.5–7.0), with the exception of cellulases from 
Paenibacillus  sp.,  Pseudoalteromonas sp.  MB-1, and Shewa-
nella  
sp., which showed their optimum activity in the 
neutral to alkaline pH range [6, 36, 48]. Cellulases from 
psychrophilic microorganisms reported up to now have 
a size range of 40–93 kDa (Table 2). The effect of vari-
ous metals, activators, and inhibitors on the cellulase 
activity is given in Table 2. The endoglucanase (Cel9P) 
from Paenibacillus showed maximal activity at pH 6.5 and 
a temperature of 35 °C for the degradation of CMC-Na 
and was stable in buffers of pH 5–10 (at 4 °C for 1 h), 
with little loss of activity under alkaline conditions; 
moreover, it was adapted to low temperature, retaining 
around 65% of its maximal activity at 5 °C [10]. 
  As is clear from the above-reviewed literature, most 
of the cellulases from psychrophiles are cold active, 
showing optimum activity at temperatures around 35–
40 °C. The cellulases included in this review are pro-
duced extracellularly, and all these cellalose-producing 
microorganisms are not true psychrophiles but faculta-
tive psychrophiles and can grow at 30–35 °C. Psychro-
phily is an evolutionary development from thermophily. 
  Thus, the extracellular enzyme activity may not be 
the highest but sufficient to support growth at the 

temperature optimum for bacterial growth. The cellu-
lases are active in nature at acidic to slightly alkaline 
pH ranging from 4.5 to 8.0. The cellulosome-like en-
zyme from Eisenia foetida is a multienzyme complex of 
CMCase with β-glucosidase, β-1,3-glucanase, and β-xylo-
sidase, with a molecular mass of 150 kDa on gel filtra-
tion under non-reducing condition. The CMCase activ-
ity in the purified enzyme complex at 15 °C was 44% of 
the activity obtained at the optimum temperature, and 
the optimum pH was 5.0 [41]. 
  Cellulases have been incorporated into detergents since 
the early 1990s for laundry purposes. During textile 
washing, cellulases remove cellulose microfibrils form-
ed during manufacturing and washing of the cotton-
based cloth [23]. Cellulases can also be used as color-
brightening and softening agents. Considering the  
present market scenario in the detergent industry, in-
corporating cellulases with proteases in detergent for-
mulations would be advantageous for enhancing the 
washing performance of detergents. The detergent in-
dustry is now focusing on cellulases for lower (cooler) 
washing temperatures (30–40 °C) and reduction in wa-
ter consumption [37]. Hence, for using the cellulases as 
detergent additives, the enzyme should be active under 
low temperature, stable under alkaline conditions, and 
compatible with oxidants and detergents. If the cellulase 
is resistant to degradation (hydrolysis) by proteases, that 
would be of added advantage for detergent formulation 
and reduce the overall cost of detergent formulation.

 

Table 2.  Kinetic properties of cold-active cellulases from psychrophiles. 

Psychrophilic  

microorganism 

Cellulolytic  

enzyme 

Temp. opti-

mum (°C) 

pH 

optimum 

Molecular  

weight (kDa) 

Activators/ 

inducers 

Inhibitors Reference 

Acremonium  

alcalophilum 

CMCase 40  7.0 

– 

Glucose  – 

[16] 

Arthrobacter sp. 

β

-Glucosidase 35 

– 

93 

 

 

 

[5] 

Clostridium sp. 

Endoglucanase, 

β

-glucosidase, 

filter paper  

cellulase 

20 5–6 

–  – 

– 

[3] 

Fibrobacter  

succinogenes 

Endoglucanase 25 

5.5 

55 

 

– 

– 

[24] 

Paenibacillus sp.  

strain C7 

β

-Glucosidase 30–35  7–8  – 

– 

– 

[36] 

Paenibacillus sp.  

BME-14 

Endoglucanase 35 

6.5 

60 

Ca

2+

, Mg

2+

, Pb

2+

,  

Mn

2+

, dithiothrei-

tol, β-mercapto-

ethanol 

Hg

2+

, Cu

2+

, EDTA  [10] 

Pseudoalteromonas  

sp. MB-1 

Endoglucanase 

35 7.2 

–  – 

– 

[48] 

Pseudoalteromonas  

sp. DY3 

Endoglucanase 40 

6–7 

52 

– 

– 

[49] 

Rhodotorula glutinis Endoglucanase 50 

4.5 

40 

Fe

3+

, Mn

2+

 Hg

2+

, Al

3+

, Ca

2+

Fe

2+

, Pb

2+

, EDTA, 

EGTA 

[32] 

Shewanella sp. G5 

β

-Glucosidase 37 

8.0 

– 

– 

– 

[6] 

 

background image

Journal of Basic Microbiology 2011, 51, 572 – 579 

Cellulases from psychrophilic microorganisms 

575 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Cloning and expression of the cellulase genes 
Gene cloning is a rapidly progressing technology that 
has been instrumental in improving our understanding 
of the structure-function relationship of genetic sys-
tems. It offers an excellent technique for the exploita-
tion and regulation of genes. Many of the industrially 
important enzymes are now produced from genetically 
engineered microorganisms. For the commercial utili-
zation of enzymes, the achievement of higher enzyme 
yields is required at low capital cost. Gene cloning and 
overexpression can play a significant role in reducing 
the production cost of enzymes. Generally, cellulases 
are composed of three domains: the cellulose-binding 
domain and the catalytic binding domain separated by 
a linker region [40]. Garsoux and coworkers cloned, 
sequenced and expressed in Escherichia coli the cold-
adapted cellulase CelG from Pseudoalteromonas haloplank-
tis
 and reported that this cellulase was composed of 
three distinct regions: an N-terminal catalytic domain 
belonging to the glycosidase family 5, a C-terminal 
cellulose-binding domain belonging to the carbohydra-
te-binding module family 5, and a linker of 107 resi-
dues, one among the longest linkers found in cellu-
lases, resulting in increased substrate accessibility to 
the catalytic domain by increasing the surface of cellu-
lose available to a bound enzyme molecule [11]. More-
over, the long linker region has been found to play a 
key role in adaptation to cold by the psychrophilic cel-
lulase from Pseudoalteromonas haloplanktis [39]. The celX 
gene encoding the cold-active cellulase (endoglucanase) 
isolated from psychrotrophic Pseudoalteromonas sp. pro-
duced a protein consisting of 492 amino acids [49]. The 
gene celA of Pseudoalteromonas sp. encoding a cold-adapt-
ed endogluanase was cloned and expressed in E. coli 
BL21 [48]. The psychrophilic cellulase CelX differed from 
its mesophilic counterpart in having a longer linker 
sequence containing 73 additional residues. Hou and 
coworkers isolated the cellobiohydrolase 1 gene (cbh1
from the cold-adapted fungus Penicillium chrysogenum 
and cloned and expressed it in Saccharomyces cerevisiae
but the recombinant enzyme accumulated intracellu-
larly and was not secreted into the medium [17]. Gener-
ally, extracellular enzyme production is favored over 
intracellular enzyme production, the latter adding to 
the production cost of the process. 

Optimization for cellulase production through 
statistical experimental designs 
For making use of cellulases from psychrotrophs for 
the industry, it is of immense importance to optimize 
the parameters for cellulase production. As far as cellu-
lases from psychrotroph are concerned, there is not 

even a single publication exclusively focusing on the 
optimization of cellulase production from psychro-
trophs. In one of the papers on cellulase optimization, 
among the various carbon sources tested, 

D

-glucose 

showed maximum protease production by Rhodotorula 
glutinis 
while beef extract and yeast extract as nitrogen 
sources were found to increase the cellulase produc-
tion. Maximum enzyme production was observed at 
pH 5 after incubation at 20 °C for 96 h [32]. Generally, 
the medium optimization is carried out by using the 
classical method by changing one independent variable 
at a time and keeping the other factors constant, lead-
ing to a considerable increase in enzyme yields. But this 
approach is burdensome and time consuming; in addi-
tion, it ignores the interaction of various physico-
chemical parameters and hence it does not depict the 
complete effects of these parameters on the process. On 
the other hand, the statistical approach using response 
surface methodology for process optimization serves 
the purpose by finding the optimal conditions in any 
given system by a set of independent variables and 
establishing the relationship between more than one 
variable. An overall 1.5-fold increase in cellulase pro-
duction was reported from Trichoderma harzianum by 
employing a two-level fractional factorial design (FFD) 
and using six factors, i.e. substrate and co-substrate 
concentration, temperature, initial pH, inoculum size, 
and agitation rate [4]. Optimization of the medium for 
the production of cellulase by the mutant Trichoderma 
reesei  
WX-112 using response surface methodology re-
sulted in an increase in cellulase activity from 7.2 to 
10.6 IU/ml [15]. 
  A model developed and validated using response 
surface methodology for the optimization of cellulase 
production was found reliable for maximizing the cel-
lulase production by Penicillium waskmanii F10-2 [14]. 
Response surface methodology has also been employed 
for optimization of other enzymes produced by various 
microorganisms, including the optimization of cold-
active protease production by psychrophilic Colwellia 
sp., with the enzyme production coinciding with the 
predicted value [45]. So for the optimization of cellu- 
lase production from psychrophiles, the statistical ap-
proach using response surface methodology should be 
exploited in the future. 

Insight into the crystal structure of cold-adapted 
cellulases 
One of the major goals of a structural study is to clarify 
the molecular basis of adaptation to low temperatures. 
The essential structural features of psychrophilic cellu-
lases that contribute to their high psychrophilic activ-

background image

576 

R. C. Kasana and A. Gulati 

Journal of Basic Microbiology 2011, 51, 572 – 579 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

ity might have developed through an evolutionary pro-
cess that led to the separation of a group of psychro-
philic strains from their relatives. Cold-adapted cellu-
lases probably are structurally modified by increasing 
the flexibility of the polypeptide chain, enabling an 
easier accommodation of substrates at low tempera-
ture. The fundamental issues concerning the molecular 
basis of cold activity and the interplay between flexibil-
ity and catalytic efficiency are of importance in the 
study of structure-function relationships in enzymes. 
Such issues are often approached through comparison 
with the mesophilic or thermophilic counterparts, by 
site-directed mutagenesis and three-dimensional (3D) 
crystal structure analysis [31, 33, 46]. Therefore, 3D 
structural comparisons between mesophilic and psy-
chrophilic cellulases are required in order to under-
stand how proteins can adapt to low temperatures. The 
first report on the structure of a psychrophilic protein, 
a cold-active α-amylase from the antarctic psychrophile 
Alteromonas haloplanctis A23, came in the year 1996 [2], 
which was followed by a preliminary crystal structure 
determination of the alkaline protease from the antarc-
tic psychrophile Pseudomonas aeruginosa [42]. However, 
the 3D structure of psychrophilic cellulases was not 
known till 2003, when a first paper appeared on the 
crystallization and preliminary X-ray crystallographic 
studies of a psychrophilic cellulase from Pseudoaltero-
monas haloplanktis
 [44]. The X-ray diffraction data at 
1.8 Å resolution for the catalytic core domain showed 
the space group to be P 2

1

 2

1

 2

1

, with refined unit-cell 

parameters  = 135.1,  = 78.4,  = 44.1 Å.  Violot  et al
[43] studied the structural properties of the full-length 
cellulase from P. haloplanktis by using both X-ray diffrac-
tion and the small-angle X-ray scattering method. The 
results of small-angle X-ray scattering showed that the 
linker region between the catalytic binding module and 
the cellulose-binding module is unstructured and un-
usually long and flexible compared to its mesophilic 
counterpart, indicating that the linker plays a signifi-
cant role in the cold adaptation of this psychrophilic 
cellulase. The longer linker in the cellulase from the 
psychrophilic  P. haloplanktis as compared to the cellu-
lase from Erwinia chrysanthemi is a highly flexible struc-
ture due to various factors, like negatively charged 
residues, the absence of positively charged residues, 
and only a small number of hydrophobic residues [39, 
43]. Due to the highly flexible structure of the linker, 
the catalytic module and the cellulose-binding domain 
are free to move to a larger extent, which helps in their 
correct positioning with respect to the cellulose sub-
strate at low temperature below 25 °C [43]. The struc-
ture-based alignment of the catalytic modules of the 

cellulases from P. haloplanktis  (Cel5GCM) and Erwinia 
chrysanthemi (Cel5GCM) showed that Cel5GCM has two 
two-residue insertions (T64-S65 and W274-N275) com-
pared to Cel5ACM [43]. Due to insertion of these residue 
pairs in each loop, β-turns are formed that are unique 
to Cel5GCM. 
  The comparison of the crystal structures of cold-
adapted enzymes and their homologous enzymes from 
mesophilic and/or thermophilic organisms is yielding 
fruits to elucidate the structural basis of temperature 
adaptation. Structural comparisons support the original 
hypothesis that cold-adapted proteins appear to contain 
fewer or weaker intramolecular interactions, which is 
assumed to facilitate global or local flexibilities in the 
protein molecules. The most frequently reported struc-
tural differences involve interactions such as fewer 
intra- or inter-subunit salt bridges, less compact hydro-
phobic packing in the protein core, longer surface loops 
and fewer prolines in such loops, an increased number 
of glycine clusters, a reduced number of proline/ar-
ginines, improved solvent interactions through addi-
tional surface (especially negative) charges, increased 
solvent exposure of apolar surfaces, and a better acces-
sibility of the active site. As the crystal structures of 
cellulases are being solved, this will considerably facili-
tate the design of rational engineering strategies for 
enzymes with desired properties (enzymes with altered 
specificity, stability, biophysical properties). 

Commercially available cold-active cellulases 
The companies producing cold-active cellulases to-
gether with the cellulases’ characteristics and uses are 
listed in Table 3. Dyadic’s ROCKSOFT

TM

 Antarctic and 

Antarctic LTC cellulases are two cold-water cellulases 
for the stonewashing process to take place at 40 °C or 
below and hence resulting in energy savings for the 
textiles manufacturers, versus the traditional stone-
wash cellulases that typically are run at higher tem-
peratures [19]. The cold-water neutral cellulase UTA-90 
and the neutral cellulase UTA-88 produced from a gene-
tically engineered microbial strain by Hunan Youtell 
Biochemical, Ltd., are low-backstaining products func-
tioning at 30–40 °C over a broad pH range, with a shelf 
life of 12 months at temperatures below 25 °C [21]. The 
Retrocell RecoP cold-temperature powdered and buf-
fered cellulase is an engineered cellulase product that 
has been specially designed to wash denims at low 
temperatures and in a wide range of pH, which results 
in very low backstaining and good contrast. This pow-
dered enzyme system contains a pH buffer for main-
taining near neutral pH (5.5–6.0) during the wash  
cycle. Also, Retrocell ZircoN, a cold-temperature liquid  

background image

Journal of Basic Microbiology 2011, 51, 572 – 579 

Cellulases from psychrophilic microorganisms 

577 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Table 3.  Properties of commercially available cold-active cellulases. 

Enzyme name 

Temp. optimum (°C)  pH optimum  Uses 

Commercial producer 

ROCKSOFT

TM

  

Antarctic LTC conc. 

40 

5.5 

Softening cotton fabrics, woven and 

knits. Increases the “stonewash” 

effect on rotary-washed garments 

using a significant amount of pumice 

stones and/or other abrasives. 

Dyadic International, Inc. 

Cold-water neutral 

cellulases UTA-88 & 

UTA-90 

30–40 

6.5–7.8 

“Stonewash” of jeans, offering high 

contrast texture patterns with low 

backstaining. 

Hunan Youtell Biochemical 

Co. Ltd. 

Retrocell RecoP &  

Retrocell ZircoN 

35–45 

6.0–6.5 

Used at low temperatures to retain 

the original indigo color of denim 

and backstaining is maintained at  

the minimum level. 

Used in denim “stonewashing” with 

or without stones and additives to 

produce the desired abrasion levels. 

EpyGen Biotech 

Siltex 30443  

Ultrazyme CLD 

30–60 (range) 

5.5–7.5 

Used for cold-water wash to obtain 

good color pull, high abrasion, low 

fabric strength loss, and low back-

staining. 

Paradise Industrial 

Corporation 

 
cellulase, is an engineered cellulase capable of washing 
indigo denims at low temperatures (30 °C or lower) and 
in a wide range of pH, with good contrast and low 
backstaining [20]. Siltex 30443 Ultrazyme CLD is a cellu-
lase enzyme for cold-water stonewashing, working in 
the temperature range of 30–60 °C and at pH 5.5–7.5 
[18]. 

Future perspectives 
Day by day, the market demand for industrial enzymes 
is increasing, necessitating the screening of various 
sources for enzymes with different functionalities. 
There are different strategies that can be employed to 
obtain efficient enzymes with the desired properties for 
industrial applications. (i) The huge unexplored biodi-
versity is an invaluable resource for biotechnological 
innovations, which can play a significant role in the 
search for new strains of microorganisms required in 
the industry. The exploitation of the biodiversity to pro-
vide microorganisms that produce enzymes well suited 
for various applications would always remain a valu-
able option, with emphasis on isolating/culturing bac-
teria expressing cellulase activity from unexplored 
niches, by employing various techniques. Metagenomic 
libraries should be established from the cold-environ-
ment sites rich in cellulosic materials, for obtaining 
novel cellulases from the uncultured microorganisms. 
(ii) Strain improvement by either conventional mutage-
nesis or through recombinant DNA technology is an-
other option. Penicillium janthinellum NCIM 1171 was sub-
jected to mutation, and five selected mutants showed 
an approximately twofold increase in activity of both 
FPase and CMCase in shake flask cultures [1], and the 

strain improvement of Acremonium cellulolyticus for cellu-
lase production by mutagenesis resulted in higher en-
zyme yields with higher filter paperase (FPase) activities 
(17.8 U/ml) compared to the parent strain C-1 (12.3 
U/ml) [8]. 
  Recombinant DNA technology was used to improve 
the thermal stability of the Clostridium cellulovorans cel-
lulosomal endoglucanase (EngB) in vitro by recombina-
tion with non-cellulosomal endoglucanase EngD [30]. 
  (iii) Another approach is protein engineering, where 
site-directed mutagenesis of the cellulase gene can be 
employed to improve the yield, stability, and the cata-
lytic properties of the enzyme. The hyperthermostable 
endoglucanase Cel5A from Thermotoga maritima sub-
jected to site-directed mutagenesis and carbohydrate-
binding module (CBM) engineering showed a shift in 
optimal pH from 5 to 5.4 in five single mutants, with 
one mutant displaying 10% higher activity than the 
native strain. After domain engineering by binding two 
CBMs, one from Trichoderma reesei and the other from 
Clostridium stercorarium,  to Cel5A, the CBM-engineered 
Cel5A showed 14–18-fold higher hydrolytic activity to-
wards Avicel [27]. Hence, these approaches should be 
followed for targeting cold-active cellulases with activi-
ties and stabilities over a broad range of pH values and 
temperatures. 
  The use of protein engineering requires thorough 
knowledge of the protein structure for site-directed 
mutagenesis to be carried out. However, for the major-
ity of cellulases in general and cellulases from psychro-
trophs, we do not have structural information available 
and our knowledge about predicting protein structure 
and function is still in its infancy. Therefore, random 

background image

578 

R. C. Kasana and A. Gulati 

Journal of Basic Microbiology 2011, 51, 572 – 579 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

mutagenesis/directed evolution will continue to be a 
leading technique to modify cellulases for some more 
time in future. 

Acknowledgements 

The authors are grateful to the Director of the Institute 
of Himalayan Bioresource Technology, Palampur, for 
support and encouragement. The Council of Scientific 
and Industrial Research is also acknowledged for finan-
cial support under the CSIR Network Project “Exploita-
tion of India’s Rich Microbial Diversity” (NWP 006). 

References 

 [1] Adsul, M.G., Bastawde, K.B., Varma, A.J., Gokhale, D.V., 

2007. Strain improvement of Penicillium janthinellum NCIM 

1171 for increased cellulase production. Bioresource 

Technol., 98, 1467–1473. 

  [2] Aghajari, N., Feller, G., Gerday, C., Haser, R., 1996. Crys-

tallization and preliminary X-ray diffraction studies of  

α-amylase from the antarctic psychrophile Alteromonas ha-

loplanctis A23. Protein Sci., 5, 2128–2129. 

  [3] Akila, G., Chandra, T.S., 2003. A novel cold-tolerant Clos-

tridium strain PXYL1 isolated from a psychrophilic cattle 

manure digester that secretes thermolabile xylanase and 

cellulase. FEMS Microbiol. Letters, 219, 63–67. 

 [4] Alam, M.Z., Muyibi, S.A., Wahid, R., 2008. Statistical 

optimization of process conditions for cellulase produc-

tion by liquid state bioconversion of domestic wastewater 

sludge. Bioresource Technol., 99, 4709–4716. 

 [5] Benesova, E., Markova, M., Kralova, B., 2005. α-Glucosi-

dase and β-glucosidase from psychrotrophic strain Arthro-

bacter sp. C2-2. Czech J. Food Sci., 23, 116–120. 

  [6] Cristobal, H.A., Breccia, J.D., Abate, C.M., 2008. Isolation 

and molecular characterization of Shewanella sp. G5, a 

producer of cold-active beta-

D

-glucosidases. J. Basic Mi-

crobiol., 48, 16–24. 

 [7] Duncan, S.M., Farrell, R.L., Thwaites, J.M., Held, B.W. 

et al., 2006. Endoglucanase-producing fungi isolated from 

Cape Evans historic expedition hut on Ross Island, Ant-

arctica. Environ. Microbiol., 8, 1212–1219. 

 [8] Fang, X., Yano, S., Inoue, I., Sawayama, S., 2009. Strain 

improvement of Acremonium cellulolyticus for cellulase pro-

duction by mutation. J. Bioscience Bioengineer., 107, 

256–261. 

  [9] Feller, G., Narinx, E., Arpigny, J.L,, Aittaleb, M., Baise, E., 

Genicot, S., Gerday, C., 1996. Enzymes from psychrophilic 

organisms. FEMS Microbiol. Rev., 18, 189–202. 

[10] Fu, X., Liu, P., Lin, L., Hong, Y., Huang, X., Meng, X., Liu, 

Z., 2010. A novel endoglucanase (Cel9P) from a marine 

bacterium  Paenibacillus sp. BME-14. Appl. Biochem. Bio-

technol., 160, 1627–1636. 

[11] Garsoux, G., Lamotte, J., Gerday, C., Feller, G., 2004. 

Kinetic and structural optimization to catalysis at low 

temperatures in a psychrophilic cellulase from the an-

tarctic bacterium Pseudoalteromonas haloplanktis. Biochem. 

J., 384, 247–253. 

[12]  Gaudin, C., Belaich,

 

A., Champ,

 

S., Belaich, J.P., 2000. CelE, 

a multidomain cellulase from Clostridium cellulolyticum: A 

key enzyme in the cellulosome. J. Bacteriol., 182, 1910–

1915. 

[13] Grant, S., Sorokin, D.Y., Grant, W.D., Jones, B.E ., Heaphy, 

S., 2004. A phylogenetic analysis of Wadi el Natrun soda 

lake cellulase enrichment cultures and identification of 

cellulase genes from these cultures. Extremophiles, 8, 

421–429. 

[14] Han, L., Feng, J., Zhu, C., Zhang, X., 2009. Optimizing 

cellulase production of Penicillium waksmanii F10-2 with 

response surface methodology. Afri. J. Biotechnol. 8, 

3879–3886. 

[15] Hao, X.C., Yu, X.B., Yan, Z.L., 2006. Optimization of the 

medium for the production of cellulase by the mutant 

Trichoderma reesei WX-112 using response surface metho-

dology. Food Technol. Biotechnol., 44, 89–94. 

[16] Hayashi, K., Nimura, Y., Ohara, N., Uchimura, T., Suzuki, 

H., Komagata, K., Kozaki, M., 1996. Low-temperature-

active cellulase produced by Acremonium alcalophilum JCM 

7366. Seibutsu-kogaku Kaishi, 74, 7–10. 

[17] Hou, Y., Wang, T., Long, H ., Zhu, H., 2007. Cloning, se-

quencing and expression analysis of the first cellulase ge-

ne encoding cellobiohydrolase 1 from a cold-adaptive Pe-

nicillium chrysogenum FS010. Acta Biochim. Biophys Sin., 

39, 101–107. 

[18] http://www.creation  intetional.com/Presenta-tions/Presen-

taton%20for%20Denim%20Finishing-%2022.02.-08%20-

PDF.pdf (accessed on 15.11.2010). 

[19] 

http://www.dyadic.com/wt/dyad/textiles (accessed on 

15.11.2010). 

[20] http://www.epygen.com/ProductPDF/FAE66Retro-cell%20-

RecoP%20.pdf (accessed on 15.11.2010). 

[21] http://www.ncb.com.cn/htmlen/product/2010-3-24/Cold-wa-

ter-neutral-cellulase-UTA (accessed on 15.11.2010). 

[22] Inglis, G.D., Popp, A.P., Selinger, L.B., Kawchuk, L.M., 

Gaudet, D.A., McAllister, T.A., 2000. Production of cellu-

lases and xylanases by low temperature basidiomycetes. 

Can. J. Microbiol., 46, 860–865. 

[23] Ito, S., 1997. Alkaline cellulases from alkaliphilic Bacillus

Enzymatic properties, genetics, and application to deter-

gents. Extremophiles, 1, 61–66. 

[24] Iyo, A.H., Forsberg, C.W., 1999. A cold-active glucanase 

from the ruminal bacterium Fibrobacter succinogenes S85. 

Appl. Environ. Microbiol., 65, 995–998. 

[25] Kasana, R.C., 2010. Proteases from psychrotrophs: An 

overview. Crit. Rev. Microbiol., 36, 134–145. 

[26] Laurent, P., Buchon, L., Guespin-Michel, J.F., Orange, N., 

2000. Production of pectate lyases and cellulases by Chry-

seomonas luteola strain MFCL0 depends on the growth tem-

perature and the nature of the culture medium: Evidence 

for two critical temperatures. Appl. Environ. Microbiol., 

66, 153–1543. 

[27] Mahadevan, S.A., Wi, S.G., Lee, D.S., Bae, H.J., 2008. Site-

directed mutagenesis and CBM engineering of Cel5A 

background image

Journal of Basic Microbiology 2011, 51, 572 – 579 

Cellulases from psychrophilic microorganisms 

579 

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

(Thermotoga maritima). FEMS Microbiol. Lett., 287, 205–

211. 

[28] Margesin, R., Schinner, F., 1994. Properties of cold adapt-

ed microorganism and their potential role in biotechnol-

ogy. J. Biotechnol., 33, 1–14. 

[29] Morita, R.Y., 1975. Psychrophilic bacteria. Bact. Rev., 39, 

144–167. 

[30] Murashima, K., Kosugi, A., Doi, R.H., 2002. Thermostabi-

lization of cellulosomal endoglucanase EngB from Clostri-

dium cellulovorans by in vitro DNA recombination with non-

cellulosomal endoglucanase EngD. Mol. Microbiol., 45, 

617–626. 

[31] Narinx, E., Baise, E., Gerday, C., 1997. Subtilisin from 

psychrophilic antarctic bacteria: Characterization and si-

te-directed mutagenesis of residues possibly involved in 

the adaptation to cold. Prot. Engineer., 10, 1271–1279. 

[32] Oikawa, T., Tsukagawa, Y., Soda, K., 1998. Endo-β-gluca-

nase secreted by a psychrotrophic yeast: Purification and 

characterization. Biosci. Biotechnol. Biochem., 62, 1751–

1756. 

[33] Papaleo, E., Pasi, M., Riccardi, L., Sambi, I., Fantucci, P., 

De Gioia, L., 2008. Protein flexibility in psychrophilic and 

mesophilic trypsins. Evidence of evolutionary conserva-

tion of protein dynamics in trypsin-like serine-proteases. 

FEBS Lett., 582, 1008–1018. 

[34] Rasmussen, M.A., Madsen, S.M., Stougaard, P., Johnsen, 

M.G., 2008. Flavobacterium sp. strain 4221 and Pedobacter 

sp. strain 4236 beta-1,3-glucanases that are active at low 

temperatures. Appl. Environ. Microbiol., 74, 7070–7072. 

[35] Schmidt-Nielson, S., 1902. Über einige psychrophile Mi-

kroorganismen und ihr Vorkommen. Zentralblatt für 

Bakteriologie, Parasitenkunde, Infektionskrankheiten 

und Hygiene Abteilung, 119, 145–147. 

[36] Shipkowski, S., Brenchley, J.E., 2005. Characterization of 

an unusual cold-active beta-glucosidase belonging to 

family 3 of the glycoside hydrolases from the psychrophi-

lic isolate Paenibacillus sp. strain C7. Appl. Environ. Micro-

biol., 71, 4225–4232. 

[37] Showell, M.S., 1999. Enzymes, detergents. In: Flickinger, 

M.C., Drew, S.W. (eds), The Encyclopedia of Bioprocess 

Technology, Vol. 2. Wiley, New York, pp. 958–971. 

[38] Singh, A., Hayashi, K., 1995. Microbial cellulases, protein 

architecture molecular properties and biosynthesis. Adv. 

Appl. Microbiol., 40, 1–44. 

[39] Sonan, G.K., Receveur-Brechot, V., Duez, C., Aghajari, N., 

Czjzek, M., Haser, R., Gerday, C., 2007. The linker region 

plays a key role in the adaptation to cold of the cellulase 

from an antarctic bacterium. Biochem. J., 407, 293–302. 

[40] Tomme, P., Warren, R.A., Gilkes, N.R., 1995. Cellulose 

hydrolysis by bacteria and fungi. Adv. Microb. Physiol., 

37, 1–81. 

[41] Ueda, M., Goto, T., Nakazawa, M., Miyatake, K., Sakagu-

chi, M., Inouye, K., 2010. A novel cold-adapted cellulase 

complex from Eisenia foetida: Characterization of a mul-

tienzyme complex with carboxymethylcellulase, beta-glu-

cosidase, beta-1,3-glucanase, and beta-xylosidase. Comp. 

Biochem. Physiol. B Biochem. Mol. Biol., 157, 26–32. 

[42] Villeret, V., Chessa, J.P., Gerday, C., Van Beeumen, J., 

1997. Preliminary crystal structure determination of the 

alkaline protease from the antarctic psychrophile Pseudo-

monas aeruginosa. Protein Sci., 6, 2462–2464. 

[43] Violot, S., Aghajari, N., Czjzek, M., Feller, G., Sonan, G.K., 

Gouet, P., Gerday, C., Haser, R., Receveur-Bréchot, V., 

2005. Structure of a full length psychrophilic cellulase 

from  Pseudoalteromonas haloplanktis revealed by X-ray dif- 

fraction and small angle X-ray scattering. J. Mol. Biol., 

348, 1211–1124. 

[44] Violot, S., Haser, R., Sonan, G., Georlette, D., Feller, G., 

Aghajari, N., 2003. Expression, purification, crystalliza-

tion and preliminary X-ray crystallographic studies of a 

psychrophilic cellulase from Pseudoalteromonas haloplanktis

Acta Crystallogr. D Biol. Crystallogr., 59, 1256–1258. 

[45] Wang, Q., Hou, Y., Xu, Z., Miao, J., Li, G., 2008. Optimiza-

tion of cold active protease production by the psychrophi-

lic bacterium Colwellia sp NJ341 with response surface me-

thodology. Bioresource Technol., 99, 1926–1931. 

[46] Wintrode, P.L., Miyazaki, K., Arnold, F.H., 2000. Cold 

adaptation of a mesophilic subtilisin-like protease by la-

boratory evolution. J. Biol. Chem., 275, 31635–31640. 

[47] Wiseman, A., 1995. Introduction to principles. In: Hand-

book of Enzyme Biotechnology, 3rd ed. (A. Wiseman, ed.). 

Ellis Horwood Ltd. T.S. Press Ltd., Cornwall, UK, pp. 3–8. 

[48] You, Y.W., Wang, T.H., 2005. Cloning and expression of 

endoglucanase of marine cold-adapted bacteria Pseudoalte-

romonas sp. MB-1. Wei Sheng Wu Xue Bao, 45, 142–144. 

[49] Zeng, R., Xiong, P., Wen, J., 2006. Characterization and 

gene cloning of a cold-active cellulase from a deep-sea 

psychrotrophic bacterium Pseudoalteromonas sp. DY3. Ex-

tremophiles, 10, 79–82. 

 
 

((Funded by 

•  Council of Scientific and Industrial Research, CSIR 
Network Project “Exploitation of India’s Rich Microbial 
Diversity” (NWP 006)))