background image

442 

Journal of Basic Microbiology 2010, 50, 442 – 451 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Research Paper 

Mating-type orthologous genes in the primarily homothallic 
Moniliophthora perniciosa
, the causal agent  
of Witches’ Broom Disease in cacao 

Ursula Kües and Mónica Navarro-González 

Division of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute,  
Georg-August-University Göttingen, Göttingen, Germany 

The cacao-pathogenic Moniliophthora  perniciosa C-biotype is a primarily homothallic Agari-
comycete of which the genome has recently become available. Searching of the genome 
sequence with mating type proteins from other basidiomycetes detected one or possibly two 
potential genes for HD1 homeodomain transcription factors, 7 or possibly 8 genes for potential 
pheromone receptors and five genes for putative pheromone precursors. Apparently, the 
fungus possesses gene functions encoded in the tetrapolar basidiomycetes in the A and B 
mating loci, respectively. In the tetrapolar species, the A and B mating type genes govern 
formation of clamp cells at hyphal septa of the dikaryon and their fusion with sub-apical cells 
as well as mushroom production. The C-biotype forms fused clamp cells and also basidiocarps 
on mycelia germinated from basidiospores and their development might be controlled by the 
detected genes. It represents the first example of a primarily homothallic basidiomycete where 
A- and B-mating-type-like genes were found. Various strategies are discussed as how self-
compatibility in presence of such genes can evolve. An A-mating-type like gene for an HD2 
homeodomain transcription factor is, however, not included in the available sequence 
representing estimated 69% coverage of the haploid genome but there are non-mating genes 
for other homeodomain transcription factors of currently unknown function that are 
conserved in basidiomycetes and also various ascomycetes. 

Keywords:  Mating types / Homeodomain transcription factors / Pheromones /  

G protein-coupled pheromone receptors / Basidiomycete 

Received: January 09, 2010, accepted: March 25, 2010 

DOI 10.1002/jobm.201000013 

Introduction

*

 

Mondego et al. [1] recently published a genome survey 
of Moniliophthora perniciosa (Crinipellis perniciosa), a hemi-
biotrophic basidiomycete pathogenic to Theobroma ca-
cao
. The genome was established in 1.9 × coverage from 
size-selected fragmented genomic DNA of shot-gun-
cloned segments of about 2 kb in length. Analysis of  
all reads (average length 550 bp) together allowed to 
assemble 17,991 contigs, the largest of which had 
25,364 bp. In addition, there were 7,065 singlets with 

                               
Correspondence: Prof. Dr. Ursula Kües, Division of Molecular Wood 
Biotechnology and Technical Mycology, Büsgen-Institute, Georg-
August-University Göttingen, Büsgenweg 2 
D-37077 Göttingen, Germany 
E-mail: ukuees@gwdg.de 
Phone: +49-551-397024 

average lengths of 1,300 bp and 455  bp, respectively. 
The total length of available sequence adds up to  
27 Mbp. With an estimated haploid genome size of  
39 Mbp, this represents 69% to the total genomic se-
quence. Using sequences from an EST library for train-
ing gene predictor programs such as AUGUSTUS, SNAP 
and Genezilla, a total of 16,329 gene models were cre-
ated by computorial approaches. Many of these pre-
dicted genes are however incomplete due to the  
generally short length of the contigs. Nevertheless, 
M. perniciosa  gene models present good similarity to 
genes from the also sequenced Agaricomycetes Copri-
nopsis cinerea
, Laccaria bicolorPhanerochaete chrysosporium
Schizophyllum commune and Postia placenta
 The cacao-pathogenic M. 

perniciosa is primarily 

homothallic and non-outbreeding. Basidiospores ger-

background image

Journal of Basic Microbiology 2010, 50, 442 – 451 

Mating-type-like genes in Moniliophthora perniciosa 443 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

minate into a mycelium that will develop clamp cells 
within a few days upon germination [2]. M. perniciosa 
infesting Theobroma species and the related malvaceous 
genus  Herrania is known as C-biotype [3]. Related bio-
types have been described from other types of plants, 
i.e. the S-biotype from solanaceous hosts, the L-biotype 
from bignoniaceous lianas, and the H-biotype from the 
malpighiaceous shrub Heteropterys acutifolia [4]. Within 
this  M. perniciosa species complex, the H-biotype has 
been redefined as Moniliophthora  (Crinipellis) brasiliensis 
by means of morphometric (basidia, basidiospores) and 
ITS data [5]. The relationship between the other bio-
types is less clear [6]. Whilst the S-bioptype is also pri-
marily homothallic, the L-biotype is tetrapolar hetero-
thallic and outcrossing with multiple A and B mating 
type specificities. As in other tetrapolar Agaricomy-
cetes, the A and B mating type genes control dikaryon 
formation and morphology including clamp cell forma-
tion and clamp cell fusion [2, 7]. 
  The mating type loci of Agaricomycetes are complex 
in structure. The A  mating  type  loci  have  been  shown 
to encode two types of homeodomain transcription 
factors called HD1 and HD2 by one or more divergently 
transcribed gene pairs. The products of the B mating 
type loci are pheromones and pheromone receptors, 
respectively, and there might be also groups of paralo-
gous genes within one locus. To be compatible in mat-
ing, two monokaryotic strains need to differ in their 
mating type specificities and these are defined by the 
specific alleles present at the two mating type loci. 
Accordingly, only when differing at both mating type 
loci, fusing sterile monokaryons can form a fertile di-
karyon on which fruiting bodies with basidiospores 
arise. At the molecular level it was established that 
HD1 and HD2 transcription factors from different  
A mating type loci have to heterodimerize and that 
pheromones and pheromone receptors from different  
B mating type loci have to interact with each other in 
order to control dikaryon formation and the related 
sexual morphological changes [8]. 
  Genes related to the A and B mating type genes of 
tetrapolar species are also present in bipolar Agarico-
mycetes [9–11] and in the possibly homothallic species 
P. chrysosporium [12, 13] where some or all genes may 
have lost their superior function in mating-type control 
but not necessarily simultaneously their elementary 
cellular functions. Mondego et al. [1] in their genome 
survey of the primarily homothallic M. perniciosa C-bio-
type noticed seven different gene models whose prod-
ucts are similar to G-protein-coupled 7-transmembrane 
pheromone receptors of the B mating type loci of the 
tetrapolar  C. cinerea and Schizophyllum commune. Detec-

tion of genes for putative mating-type-like pheromones 
and of genes resembling A mating type genes of Agari-
comycetes were not mentioned by the authors. Here, 
we present an analysis of the M. perniciosa C-biotype of 
potential genes related to A and B mating type genes of 
other basidiomycetes. 

Materials and methods 

Sequences and sequence analysis 
The complete genome of M. perniciosa FA553 as linked 
on the ‘Blast with fungi’ genome page at NCBI 
(http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?or-
ganism=fungi) was subjected to tblastn searches using 
protein sequences of interest. Hit contigs and singlets 
were evaluated for defining coding regions of interest. 
Where required, adjustments to published gene pre- 
dictions were done. For protein comparisons, sequen- 
ces were aligned using ClustalX (http://www-igbmc.u-
strasbg.fr/BioInfo/ClustalX/Top.html) and GeneDoc 

 

version 2.6.002 (http://www.psc.edu/biomed/genedoc/). 
Phylogenetic trees were calculated by the neighbour 
joining method of MEGA version 4.0 [14]. 
 The 

5′ and 3′ truncated HD1 genes on CP02-PF-001-

002-G07-UC.R (NCBI GenBank accession number 
ABRE01018067) and Contig1744 (ABRE01001637; com-
plement) cover the whole available sequences. The  
putative homeodomain transcription factor gene on 
Contig12913 (ABRE01012662; complement) is 3′ trun-
cated: join 1..166,221..342,396..703. For coding 

 

regions on Contig11724 (ABRE01011481) join 1..121, 
182..238,293..459. 
  Coordinates of the 3′ truncated β-fg gene of Con-
tig14658 (ABRE01014396) are as follows: join 815..817, 
866..920,982..1033. The 5′  half  of  the  mip gene as  
present on Contig17178 (ABRE01016908; MPER_11852)  
join to 1..342,395..723 on Contig14530 (ABRE01014268; 
complement). 
  Complete putative pheromone genes and complete or 
partial genes for pheromone-like peptides of M. perni-
ciosa
 are found on the complementary strands of se-
quences as listed in Table 1. 
  The complete pheromone receptor gene on Con-
tig15640 (ABRE01015374) of M. perniciosa was taken as 
defined in NCBI GenBank. Predictions for other phero-
mone receptor genes were adjusted: For the 3′ trun-
cated gene on Contig14531 (ABRE01014269; comple-
ment) join 372..531,589..819,877..1014,1017..1128, 
1200..1315,1370..1589. The prediction on Contig5948 
(ABRE01005767; complement) is taken as suggested but 
the start codon: the gene is 5′ and 3′ truncated and the 

background image

444 

U. Kües and M. Navarro-González 

Journal of Basic Microbiology 2010, 50, 442 – 451 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

complete sequence 617..747 is part of an exon. For the 
3´ truncated gene on Contig1742 (ABRE01001635; com-
plement) join 1..122,177..298,338..441. To obtain a  
coding region for the 5´ truncated gene on Contig16294 
(ABRE01016026; complement) join 1190..1348, 
1424..1562,1616..2099,2156..2293,2365..2475. For read-
ing frames of the 5′ and 3′ truncated gene on CP02-S2-
032-503-E04-UC.F (ABRE01021646) join 1..70,119..487 
and the 5′ and 3′ truncated gene on CP02-S2-041-311-
F08-EM.F (ABRE01022527; complement) join 1..189, 
243..724. Furthermore, a putative pheromone receptor 
gene starts at 1..93 on Contig12606 (ABRE01012359; 
complement). 
  For coding regions of the putative clp1 of M. perni- 
ciosa
 see 147..550 on CP02-S2-032-310-H05-UE.F 
(ABRE01021382) and 23..175 on Contig4315 
(ABRE01014189). Sequences resembling FTR1 of S. com-
mune
 are MPER_04098 from Contig7660 
(ABRE01007448) and an N-terminal truncated protein 
deduced from Contig16807 (ABRE01016537): join 
1..22,79..233,295..420. 

Results 

Putative A mating type-like genes 
The HD1 mating type proteins b1-2 (AAD33337) and  
a1-2 (EAU92789) from paralogous A mating type genes 
of C. cinerea [15] were used to search (blastn) the M. per-
niciosa
 genome. The 381 bp long CP02-PF-001-002-G07-
UC.R and the 533 bp long Contig1744 were hit due to 
sequence conservation of the encoded HD1 homeodo-
main motifs. When using the complete sequence of 
CP02-PF-001-002-G07-UC.R in a search (blastx) of the 
complete NCBI database, HD1 mating type proteins a1-1 
of L. bicolor and AαZ3 of S. commune came up as the most 
similar proteins (Fig. 1A) amongst numerous other HD1 
mating type proteins of different basidiomycete species. 
The deduced product of Contig1744 is most similar to 
the  C. cinerea HD1 mating type proteins b1-1 and d1-1 
(Fig. 1B). Incidentally, the two M. perniciosa sequences 
could come from the same gene overlapping by just one 
nucleotide (A; position 703 in CP02-PF-001-002-G07-
UC.R; position 533 complement in Contig1744). Alter-
natively, as in the A mating type locus of other Agari-
comycetes containing pairs of duplicated HD1 and HD2 
genes of paralogous function [10,13,16–18], paralogous 
HD1-like genes could be present in M. perniciosa
  Next, the HD2 mating type protein a2-1 of C. cinerea 
(CAA56131) was used to tblastn (default setting) the  
M. perniciosa genome. The 1390 bp long Contig12913 
was hit by sequence similarities of the translated se-

quence to the HD2 homeodomain motif. A gene with at 
least two introns was detected that translates into a 
sequence with strong similarity to an uncharacterized 
fungal transcription factor with a classical homeodo-
main. In a search (blastp of the NCBI database), a puta-
tive protein of L. bicolor was identified as most similar 
followed by predicted proteins from allelic genes of a 
sequenced dikaryon of the Agaricomycete P. placenta 
and by a putative protein from C. cinerea. Searches 
(tblastn on the ‘Blast with fungi genome’ page at NCBI) 
indicated that the other basidiomycetes with submitted 
genomes have also putative genes for related proteins, 
as it is also true for a subset of the sequenced ascomy-
cetes (Fig. 1C). However, none of these genes are in-
cluded in any of the known fungal mating type loci and 
have been shown to possess mating type function. 
  Reducing the stringency (Expect 1000 in tblastn 
search) using the C. cinerea a2-1 sequence, another gene 
on Contig11724 was identified for a product related to 
other fungal non-mating-type homeodomain transcrip-
tion factors such as a LIM-homeobox protein from the 
Tremellomycete  Cryptococcus neoformans and the cell-
cycle regulator YOX1 of the ascomycete Saccharomyces 
cerevisiae
 (Fig. 1D). 
  Triggered by the obvious failure of detecting an HD2-
like gene in the M. perniciosa genome, other HD2 mating 
type proteins from the basidiomycetes C. cinerea,  L. bi-
color
S. communeC. neoformans and Ustilago maydis (Usti-
laginomycetes) were used (tblastn searches). However, 
these also did not reveal an HD2-like mating type gene 
in M. perniciosa
 The 

A mating type locus in various Agaricomyetes is 

directly flanked by the 3´ end of a conserved gene β-fg 
for an unknown protein and, at the other end, by the  
3′ end of a conserved gene mip for a mitochondrial  
intermediate peptidase [10, 11, 13, 15–19]. Therefore, 
tblastn searches of the M. perniciosa genome with β-fg 
(EDR15176) and mip (EDR15793) from L. bicolor were 
performed. Unfortunately, only the 5′ end of the 
M. perniciosa β-fg gene was found on Contig14658. The 5′ 
half of the mip gene was detected on Contig17178 and a 
continuing sequence on Contig14530. However, the 3′ 
end of mip was not identified that could help in defin-
ing the neighbouring gene. In conclusion, from the 
currently available M. perniciosa  genome  sequence  we 
are unable to deduce a complete A-mating-type-like 
locus consisting of both HD1-like and HD2-like genes. 

Genes for putative B mating type-like pheromone 
receptors and pheromones 
Of the seven genes for putative G-protein-coupled  
7-transmembrane pheromone receptors found by Mon-

background image

Journal of Basic Microbiology 2010, 50, 442 – 451 

Mating-type-like genes in Moniliophthora perniciosa 445 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

D

F

HKQ

W

N

LL

NDE

V

L

S

GHA

SETLD

IDQSH

LA

L

EVA

GC

IE

E

L

CDA

FM

F

L

GQI

ND

EFDHR

LS

EF

V

YPTTGN

I

L

F

YQT

W

SN

L

QLD

L

EEA

V

K

SESVD

DV

TLELA

F

QVA

SR

VE

IF

AE

R

F

SD

L

F

A

AV

D

T

L

AVEFR

NDL

D

A

V

F

SG

L

CP02-PF-001-002A-G07-UC.R

a1-1

A

L

F

YQT

W

SN

L

QLD

L

EEA

V

K

SESVD

DV

TLELA

F

QVA

SR

VE

IF

AE

R

F

SD

L

F

A

AV

D

T

L

AVEFR

NDL

D

A

V

F

SG

L

T

F

QTR

W

G

VL

RAS

I

D

S

D

L

P---

L

QPS

TLEL

SDR

V

SYA

I

AD

LAE

VL

L

TQE

A

N

N

KA

I

EDD

LSNDL

V

A

Q

F

---

a

A Z3

CP02-PF-001-002-G07-UC.R

a1-1

A Z3

TPE

HQ

R

Q

PSSSSRS

S

SS

P

EPQPHQSTP

E

P

EE

PPI

S

SS

PYV

R

AAYEWLIQNLHNPYPT

LIDESLITQPG

M

GLE

E

A

P

V--------RSPRSSN

T

C

P

Q

YI

EH

AY

K

WLL

R

NLHNPYPT

HQ

Y

E

AFEA

L

EF

SE

NDC

E

W

QE

NMPPV

PPFI

G

A

C

YEWLLQ

H

LHNPYPS

A Z3

---

HQ

Y

E

AFEA

L

EF

SE

NDC--------

E

W

QE

NMPPV

PPFI

G

A

C

YEWLLQ

H

LHNPYPS

B

Contig1744

TAQ

R

DA

I

SF

QSGTSRK

T

ID

N

WFID

V

RKRIGWN

A

IKK

QF

F

KE

RK

EM

VL

A

A

RLH

F

GHEVDESE

LP

KKRKEP

B

b1-1
d1-1

G

EVRT

Q

IARQT

R

TSRKDIDAWFIDARRRIGWNEVRRK

H

F

E

NKR

V

DIV

R

AAS

I

F

TGPQ---

SIP

--AE

V

D

P

QVRS

S

IAKQTG

A

SRKDIDAWFIDARKRIGWNELRRR

C

F

D

NKR

A

NIV

E

AAT

R

F

HQGK---

SL

EDLPC

I

A

E

QAQ

SL

G

L

A

FAGI

EA

KA

LE

LY

G

GR

LK

PS

HFVE

KL

AGQ

VK

T

LTP

E

IKEEV

E

K

QKH

E

E

R

---------L

KR

ALPDH

IEL

E

FAGI

L

SRA

RS

LY

EE

KF

S

PSKLA

V

KLD

TA

VKDMTP

S

LKEQLK

N

D

EAR

RKRE

ASTVGIINQ

R

Contig1744

b1-1

Q

Q

Q

YGP

TIE

NDL

A

S

I

T

S

Q

A

SAW

Y

D

GRY

AQ

SKLA

D

KLD

PV

VKDMTP

A

LKE

K

IKRD

AD

ERRRE

ERQK---K

KR

G

S

S

SS

S

Q

GQ

S

S

d1-1

C

ti 1744

RR

LGHKHEAS

S

SSI

S

D

EVIV

QA

V

PTPAP

M

A

GQ

KRRADN

D

EPE

VES

PSN

A

R

HA

YPTPE

R

SPAS

AA

ELL

A

SP

PSFA

ID

SDKLPSVG

R

KRR

R

S

LES

DE

T

KR

NP

YPSPE

C

SPASS

SGAA

LSPV

VPV

IDL

T

GE

SQCS

R

P

N

L

K

RRA

S

SC

S

Contig1744

b1-1
d1-1

KR

NP

YPSPE

C

SPASS

SGAA

LSPV

VPV

IDL

T

GE

SQCS

R

P

N

L

K

RRA

S

SC

S

d1 1

C

---------------MCLPRFQ

AS

A

T

DFAYNTFRHAQV

SP

S

S

ESADYDAREH

SS

TSH

M

DL

S

DVL

VR

---

MLTPLQ

SASS

PYYE

S

IDG

SS

AAP

SP

A

T

SEY

T

EPSSSQGAASTSNA

S

M

T

DAP

Contig12913

EAU83072

---------------MLTPLQ

SASS

PYYE

S

IDG

SS

AAP

SP

A

T

SEY

T

EPSSSQGAASTSNA

S

M

T

DAP---

MARHEPYPILDMRSRRASLRLD

A

AAVVHK

S

DEDR

SS

DG

SP

T

S

AIT

S

YELDRVK

S

EDE

L

ELASGP

IR

FRS

----------------MLTEI

SASTS

TTP

T

PDP

S

P

S

PA

S

TD

T

NAE

S

PAEGSP

S

APQH

V

VP

S

R

S

TS

R

---

EAU83072 
EDR08756

EED85981

MLTEI

SASTS

TTP

T

PDP

S

P

S

PA

S

TD

T

NAE

S

PAEGSP

S

APQH

V

VP

S

R

S

TS

R

-----------MSSTDSPDQS

T

M

STT

PTTAPTT

SSS

AD

S

TP

S

PSI

S

NATTAP

SS

AARRPQRK

S

T

L

T---

EED85981
EED55353

Contig12913

EAU83072
EDR08756

--------E

KRKR

C

RVT

P

EQL

K

HLE

R

IF

AT

DR

N

PTAARRREI

S

E

M

LGM

Q

ERQTQVWFQNRRAKAKVM

EA

-----APKP

K

Q

KR

S

RV

NHV

QL

KR

LE

E

LF

AM

D

PA

P

PPMV

RKEI

A

EEL

Q

MSERQTQIWFQNRRAK

E

K

N

I

TG

GSSAKSDTE

KRKR

S

RVT

Q

EQLVHLE

QY

F

KA

DR

C

PTA

T

RRREI

S

EQLGM

Q

ERQTQIWFQNRRAKAKL

QEG

EDR08756

EED85981
EED55353

GSSAKSDTE

KRKR

S

RVT

Q

EQLVHLE

QY

F

KA

DR

C

PTA

T

RRREI

S

EQLGM

Q

ERQTQIWFQNRRAKAKL

QEG

---PDGVKP

KRKR

A

RVS

A

EQLVHLE

A

IF

VV

DK

C

PTAARRKEI

CA

QLGMTERQTQIWFQNRRAKAKL

QAR

-----QQQKNN

KR

Q

R

A

T

QD

QLV

T

LE

LE

F

NK

N

PT

PTAA

T

R

ER

I

A

QEI

N

MTER

SV

QIWFQNRRAK

I

KML

AK

K

LPATLPHTKIVSNL

P

-------------------------

ST

-D

E

VD

L

V

NLIHE

DEI

V

E

VIPCT

D

L

A

V

EED55353

Contig12913

QQQKNN

KR

Q

R

A

T

QD

QLV

T

LE

LE

F

NK

N

PT

PTAA

T

R

ER

I

A

QEI

N

MTER

SV

QIWFQNRRAK

I

KML

AK

AAKPPTTRRS

T

PEAR

P

LTRSITPPPP--------------L

TT

GFDFE

L

QH

LL

N

E

TS

PV

T

IIP

A

T

H

L

R

I

K

QSSVTEVSELSPD

TP

PE----------------------L

ST

GF

E

AE

L

Y

NLIHE

DG

PV

T

IIPCT

D

L

S

I

QKAFAAPEAS

T

SEA

T

D

ICP

E

PD

M

H

D

R

IHE

AG

PV

MF

IPCT

E

L

V

I

EAU83072 
EDR08756

EED85981

QKAFAAPEAS

T

SEA

T

D--------------------------ICP

E

PD

M

H

D

R

IHE

AG

PV

MF

IPCT

E

L

V

I

K

SIETGEGCD

S

IPE

S

MRQYLAMQFDPSKPGARDPFGRTGGYG

T

SGAYPSESTPSGKVV

I

HHFT

C

RS

L

T

I

EED85981
EED55353

GSWRRIA

A

S

TS

K

R

D

Q

IAYLC

NV

K

--Q

CLTWFV

L

S

ESS

GFKM

L

L

SV

GTWKRVA

D

T

--

K

YS

LV

T

Y

T

C

PA

R

--

RCLTWYI

N

S

NNR

GFKM

D

VPY

Contig12913

EAU83072 

GSWRRIA

TQTD

K

HA

LLAYVC

EV

K

--

RCLTWYI

K

S

AGY

GFKM

E

IPF

GSWKRIA

T

T

AG

K

H

DLLAYV

HDTTGI

RCMSWFV

HCAGT

GFKM

D

IP

L

GSWRRI

GQN

AM

DLV

V

F

YSPE

K

A

CMTYYI

NNDSA

GYKI

EY

PF

EDR08756

EED85981
EED55353

GSWRRI

GQN--AM

DLV

V

F

YSPE

K

--A

CMTYYI

NNDSA

GYKI

EY

PF

EED55353

D

Contig11724

EDR

RCPA

V

ENSN

E

T

Y

A

RTP

F

PS

T

EER

L

ALARQVDMS

A

RSVQIWFQNKRQ

QT

K

QT-

R

Q

SS

S--AQCMRS

T

PYD

EDR11530

EED80346

AAW45768

DAA

QL

K

VL

N

E

T

Y

N

RT

AF

PS

T

EER

H

ALAK

A

LDMS

A

RSVQIWFQNKRQ

S

MR

QTN

R

Q

SS

TV

S

SAHQ

S

F

T

MAN

S

NT

QL

M

MLEQ

L

Y

R

RT

SH

PT

R

EQR

D

ALAKE

G

DM

EV

RSV

T

IWFQNKRQ

ME

R

RAK

K

P

S

PRH

S

YPFHDV

S

GKT

T

PE

QL

K

VLE

FW

Y

DIN

P

K

P

DN

Q

L

R

EQ

LA

A

QL

G

MT

K

R

N

VQVWFQNRR

AK

MK

GLA

K

KEAEGQESKK

S

PENQE

AAW45768

CAA86628

T

PE

QL

K

VLE

FW

Y

DIN

P

K

P

DN

Q

L

R

EQ

LA

A

QL

G

MT

K

R

N

VQVWFQNRR

AK

MK

GLA

K

KEAEGQESKK

S

PENQE

S

SQ

EL

S

ILQ

AE

F

E

K

C

P

A

PS

K

E

K

R

IE

LA

ESCH

MT

E

K

A

VQIWFQNKRQ

A

VK

RQRIA

TS

KS

T

TIIQ

T

V

S

PPS

PS----------GN----------------Q

S

HVPR

SSP

EVHA

SPTL

-

TSS

H--

RR

V-PRPQ

E

T

V

PV

D

P

HGEPLLDDLSPSGYGGTPI---PILETPYMT

S

SS

Q

QE

T

ITSRSH

PS

HS

SSS

H--

RR

I--

QA

Q

E

E

V

PT

D

P

IHTVRRAALLEQERGGSE

DQSSPPVGS

Q

S

TTP

RASH

SPSL

EPM

T

PPLL

R

D

A

TPVH

L

TAR

Contig11724

EDR11530

EED80346

IHTVRRAALLEQERGGSE-------DQSSPPVGS

Q

S

TTP

RASH

SPSL

EPM

T

PPLL

R

---D

A

TPVH

L

TAR

GTSSAIGPSPPLTDSAVSSSHFNLLPPPASVNMGRRA

S

LANGEAAK

I

EIFVA--

KR

AAA

Q

KR

E

E

VL

Y

N

V

PPLDVHATPLASRVKADILRDGSSCSRSSSS

S

PL

E

N

T

P

P

RPHH

S

LNRR

SST

PSI

KR

S--

QA

LTFH

L

NPQ

EED80346

AAW45768

CAA86628

PPLDVHATPLASRVKADILRDGSSCSRSSSS

S

PL

E

N

T

P

P

RPHH

S

LNRR

SST

PSI

KR

S

QA

LTFH

L

NPQ

RK

QW

S

RYP

CAA86628

Contig11724

Q

RK

-W

S

GLL

KR

SAPTFD

EDR11530

EED80346

AAW45768

GDAGANSP

KK

TL

T

PVK

AAW45768

CAA86628

 

Figure 1. Alignment of A. the translated protein sequence from CP02-PF-001-002-G07-UC.R of M. perniciosa and the corresponding 
regions of the HD1 mating type proteins a1-1 of L. bicolor (EDR15177) and  A

αZ3 of S. commune (AAB01369),  B.  the translated protein 

sequence from Contig1744 and the corresponding sequence regions of the C. cinerea HD1 mating type proteins b1-1 (CAA44210) and  
d1-1 (EAU92783),  C.  the deduced protein sequence of a gene on Contig12913 and the C-terminal truncated sequences of putative  
non-mating-type homeodomain transcription factors of C. cinerea (EAU83072; for corrected gene sequence join AACS01000245: 
32342..32679,32741..33003,33075..34367,34469..34473).  L. bicolor (EDR08756), P. placenta  (EED85981) and the ascomycetous mito-
sporic fungus Aspergillus flavus (EED55353) and D. the deduced protein sequence of a gene on Contig11724 and predicted proteins of 
L. bicolor (EDR11530) and P. placenta (EED80346), the LIM-homeobox protein of C. neoformans (AAW45768) and YOX1 of S. cerevisiae 
(CAA86628). For proteins of species other than M. perniciosa, only relevant protein regions are shown. Sequences belonging to 
homeodomain motifs are underlined. The homeodomain motifs of the HD1 mating type proteins in A. and B. are shown incomplete due to 
gene truncations of the respective M. perniciosa on the available contigs. 

background image

446 

U. Kües and M. Navarro-González 

Journal of Basic Microbiology 2010, 50, 442 – 451 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

dego  et al. [1], only one is complete (on Contig15640). 
Three of the other genes are 5′ and 3′ truncated, one 
gene is 5′ truncated and two genes are 3′ truncated (see 
Materials and methods). In addition, there might be 
another pheromone receptor gene on Contig12606 by a 
93 bp sequence that translates into a sequence highly 
homologous to the N-termini of various basidiomy-
cetes’ pheromone receptors (not shown). On the DNA 
level, this sequence has 77% identity to the first 93 bp 
of the putative pheromone receptor gene on Con-
tig14531 and the deduced amino acid sequences have 
83%  identity  and  87%  similarity  to  each  other.  It  is 
however possible that the sequence on Contig12606 
belongs to one of the four 5′ truncated genes and not to 
a new, eighths pheromone receptor gene. 
  A number of basidiomycetes have now been shown 
to contain, other than pheromone receptor genes in the 
mating type loci, elsewhere in the genome extra non-
mating-type pheromone receptor genes [9–11, 13, 17, 
20]. However, phylogenetic evidence in C. cinerea and 
L. bicolor indicates that pheromone receptor genes from 
the  B mating type loci of Agaricomycetes are ortholo-
gous to each other whereas such genes outside the B 
mating type locus are more distantly related to the 
respective mating type genes [13]. In order to analyze 
the potential pheromone receptors of M. perniciosa, we 
performed a phylogenetic analysis with pheromone 
receptors from other fungi (Fig. 2). Strikingly, the M. 
perniciosa
 pheromone receptors from Contig14531 and 
Contig5948 grouped specifically with two of the paralo-
gous  B mating type pheromone receptors of C. cinerea 
(CcSTE3.1, CcSTE3.3) and their orthologous B mating 
type pheromone receptors from L. bicolor (LbSTE3.1, 
LBSTE3.3) coming from positional conserved genes [13, 
21], whilst no sequence was particularly similar to gene 
products from a third conserved location of the B mat-
ing type loci (CcSTE3.2a, CcSTE3.2b; LBSTE3.2). Other 
M. perniciosa sequences clustered independently from 
any foreign receptor sequence (Fig. 2). 
 All 

basidiomycete 

B mating type pheromone precur-

sor sequences from the NCBI database together with an 
added symbol * at their C-terminal end (to find cor-
rectly positioned stop codons) were used in searches 
(tblastn) of the M. perniciosa  genome done at lowest 
stringency (Expect 1000) by the generally very poor 
conservation of fungal pheromone sequences (e.g. see 
[13, 17, 21–24]). Two sequences for putative phero-
mones (on Contig12747 and Contig15613) indentified 
by these searches are listed in Table 1. In addition to 
genes for B mating-type pheromones, both C. cinerea and 
L. bicolor possess large families of non-mating type 
genes for conserved pheromone-like peptides [13, 25]. 

Potential genes for such pheromone-like peptides were 
also detected in M. perniciosa (Table 1). Since pheromone 
genes in other Agaricomycetes are clustered in groups 
and linked to genes for pheromone receptor genes [13, 
17, 21–24, 26, 27], all contigs with potential phero-
mone genes or putative pheromone receptor genes (see 
below) were analyzed for presence of further phero-
mone genes but no more could be detected. 

Genes for cellular functions overcoming mating-type 
regulation in sexual development 
Mutants in gene pcc1 in C. cinerea (BAA33018) have been 
described that override the need of mating type genes 
in creating mycelial dikaryon morphology and develop-
ing fruiting bodies. Pcc1 is an HMG box transcription 
factor acting likely as repressor of sexual development 
[28, 29]. In searches (tblastn) with Pcc1 against the 
M. perniciosa genome, sequences were found for po-
tential HMG-box transcription factors [Contig11704 
(ABRE01011461), Contig17486 (ABRE01017215), Con-
tig8803 (ABRE01008584), Contig10798 (ABRE01010559), 
Contig15179 (ABRE01014916), CP02-S2-028-254-A08-
UE.F (ABRE01020867)]. In reciprocal searches against 
the NCBI database (blastx), C. cinerea genes for potential 
HMG box transcription factors came up, but similarity 
was always restricted to the DNA binding motif permit-
ting no further conclusions on existence of pcc1 in 
M. perniciosa
  Clp1, as another regulator of sexual development in 
C. cinerea, induces clamp cell production [30]. The 
C. cinerea Clp1 sequence (EDR10292) identified two  
sequences (CP02-S2-032-310-H05-UE.F: ABRE01021382; 
Contig4315: ABRE01014189) that appear to carry the  
5′ end and the 3′ end of the gene, respectively. 
 Another 

gene, 

frt1 (AAA74917), coding

 

for a regula-

tory protein with a Rex4-like motif, activates fruiting 
when inserted ectopically into monokaryotic strains  
of  S. commune [31, 32]. Two different proteins highly 
similar to the first (47/63% identity/similarity) and the  
second half of FTR1 (50/66% identity/similarity) are 
apparently encoded on Contig7660 and Contig16807 of 
M. perniciosa, respectively. 

Discussion 

Different biotypes of the fungal pathogen M. perniciosa 
occur on shrubs in tropical countries. The heterothallic 
L-biotype has two mating type loci with multiple alleles 
and these were found to control clamp cell formation 
and fusion, respectively [2, 7]. Mating type genes typical 
of basidiomycetes are therefore expected for the tetra-

background image

Journal of Basic Microbiology 2010, 50, 442 – 451 

Mating-type-like genes in Moniliophthora perniciosa 447 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

LbSTE3.3

CcSTE3.3

Contig5948

Contig14531

LbSTE3.1

CcSTE3.1

Contig15640

LbSTE3.4

CP02-S2-041-311-F08-EM.F

Contig16294

CP02-S2-032-503-E04-UC.F

CcSTE3 2151

LbSTE3.13

CcSTE3 7395

LbSTE3.9

CnSte3a

ScSte3p

LbSTE3.2

CcSTE3.2b

CcSTE3.2a

LbSTE3.6

CcSTE3 2153

CnSte3α

CnCpr2

LbSTE3.5

ScSte2p

92

54

96

65

97

98

93

32

30

50

30

26

32

33

33

13

11

12

7

45

19

4

7

0.2

Gene Subgroup 3

Gene Subgroup 1

Gene Subgroup 2

LbSTE3.4

CcSTE3-2151

Contig15640

Contig1742

CcSTE3-7395

LbSTE3.9

LbSTE3.3

CcSTE3.3

Contig14531

LbSTE3.1

CcSTE3.1

LbSTE3.13

CnSte3α

LbSTE3.6

CcSTE3 2153

LbSTE3.5

CcSTE3.2b

LbSTE3.2

CcSTE3.2a

CnSte3a

CnCpr2

ScSte3p

ScSte2p

97

68

41

55

21

32

20

12

26

99

54

69

88

30

35

51

22

47

12

24

0.2

Gene Subgroup 3

Gene Subgroup 1

Gene Subgroup 2

B

A

LbSTE3.3

CcSTE3.3

Contig5948

Contig14531

LbSTE3.1

CcSTE3.1

Contig15640

LbSTE3.4

CP02-S2-041-311-F08-EM.F

Contig16294

CP02-S2-032-503-E04-UC.F

CcSTE3 2151

LbSTE3.13

CcSTE3 7395

LbSTE3.9

CnSte3a

ScSte3p

LbSTE3.2

CcSTE3.2b

CcSTE3.2a

LbSTE3.6

CcSTE3 2153

CnSte3α

CnCpr2

LbSTE3.5

ScSte2p

92

54

96

65

97

98

93

32

30

50

30

26

32

33

33

13

11

12

7

45

19

4

7

0.2

Gene Subgroup 3

Gene Subgroup 1

Gene Subgroup 2

LbSTE3.4

CcSTE3-2151

Contig15640

Contig1742

CcSTE3-7395

LbSTE3.9

LbSTE3.3

CcSTE3.3

Contig14531

LbSTE3.1

CcSTE3.1

LbSTE3.13

CnSte3α

LbSTE3.6

CcSTE3 2153

LbSTE3.5

CcSTE3.2b

LbSTE3.2

CcSTE3.2a

CnSte3a

CnCpr2

ScSte3p

ScSte2p

97

68

41

55

21

32

20

12

26

99

54

69

88

30

35

51

22

47

12

24

0.2

Gene Subgroup 3

Gene Subgroup 1

Gene Subgroup 2

B

A

 

Figure 2.  Phylogenetic analysis of pheromone receptors of the basidiomycetes M. perniciosa (marked by grey shading), C. cinerea 
(EAU87370 = CcSTE3.1; corrected EAU87377, join complement AACS01000134: 162667..162895,162948..163392,163443..163580, 
163633..163815,163875..164073 = CcSTE3.2a; corrected EAU87377, join complement AACS01000134: 161053..161509,161568..161705, 
161760..161939,161999..162206 = CcSTE3.2b; EAU87378 = CcSTE3.3; corrected EAU87392: join complement AACS01000134: 
209361..210490,210541..210663,210716..210812 = CcSTE3-2151; corrected EAU87394, join complement AACS01000134: 

 

212458..213373,213434..213875,213932..214069,214121..214301,214363..214564 = CcSTE3-2153; EAU91360 = CcSTE3-7395), 
L.  bicolor  (models were taken from http://genome.jgi-psf.org/Lacbi1/Lacbi1.home.html as given in [13]), C. neoformans  (AAN75624 = 
CnSte3a; CnSte3

α = XP_570116; CnCpr2 = AAW41941) and the two mating type pheromone receptors ScSte2p and ScSte3p of the 

ascomycete  S. cerevisiae (EEU04250, EEU09227). Paralogous B mating type pheromone receptors of C. cinerea and of L. bicolor are 
presented in bold and labelled with the name of the paralogous subgroups they belong to [13]. Due to incomplete sequences of 
M. perniciosa, the first 107 – 117 amino acids from the utmost N-terminal sequences (A) and more inner regions of the N-termini of 127 to 
321 amino acids in length (B) were independently analyzed from proteins where available. Bootstrapping values (500 replications) above  
50 are shown at tree branchings. The scale bar defines the number of nucleotide substitutions per site. 

 
 
 
 

Table 1.  Potential precursors for pheromones and pheromone-like peptides in M. perniciosa. 

Accession 

Contig/bp position 

Deduced peptide sequence

1

 

ABRE01012499 Contig12747/1295-1113 

MVIRPFSRRWEMVSQPARRVMSYGQGKRVVTHRCRLNLHTTP 

CDYSRYEIFLRRSLCLIS 

ABRE01015347 Contig15613/614-366 

MDSFENFDFLALASDESPIHNPFASFSTSLSEDASEVPSAAL 

FNIESCRSRSFELQTDSQSLPTNHERAEAAAVHGGFCVIA 

ABRE01010055 Contig10289/424-311 

MDSFTTITSSVEDITVSLPVPVDEELKGGGWAYCVIA 

ABRE01004489 Contig4617/721-650 

…VISLPVPVDEEQNGGGWAYCVIA 

ABRE01019551 CP02-S2-000-167-C03-UC.F/471-415 

…IPINEEQQGGGWCYCVIA 

1

 i. Predicted N-terminal recognition sites (charged doublets) and the C-terminal CAAX-motifs (cysteine, aliphatic amino acid, 

aliphatic amino acid, any amino acid) typical for basidiomycete pheromones [8] are underlined. ii. The potential genes for 

pheromone-like proteins on Contig4617 and CP02-S2-000-167-C03-UC.F are incomplete by 5′ truncations. 

background image

448 

U. Kües and M. Navarro-González 

Journal of Basic Microbiology 2010, 50, 442 – 451 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

polar L-biotype. The primarily homothallic C-biotype [2] 
has no obvious need for such genes acting in mating. 
Nevertheless, this study and the earlier work by Mon-
dego et al. [1] indicate that the fungus indeed possesses 
genes orthologous to mating type genes of heterothallic 
basidiomycetes. Markedly, post-mating functions being 
in heterothallics under control of the mating type 
genes such as nuclear pairing, synchronized nuclear 
division, clamp cell production and also fruiting [33–
36] are performed in the C-biotype [2]. Moreover, the 
disposability of self-compatibility does not essentially 
block the overall possibility of mating to other strains 
and the employment of mating type genes as demon-
strated by crosses between self-compatible and self-
sterile strains of C. cinerea [37]. 
 From nutritionally forced crosses of primarily 
homothallic and bipolar heterothallic forms of the 
Agaricomycete  Sistostrema brinkmannii resulting in a 
new mating type within a self-sterile offspring, Lemke 
[38] suggested that primarily homothallic organisms 
will have a cryptic or masked mating type locus. Ull- 
rich and Raper [39] put forward the duplication of  
the single mating type locus and inclusion of compati-
ble alleles in one genome as one possible explanation 
for creating in S. brinkmannii a primary homothallic 
form from the bipolar situation. Experimental indica-
tions for this scenario is not available for any basidio-
mycete up to now, and the lack of evidence for ane-
uploidy or insertional translocation in progenies of 
crosses between primarily homothallic and bipolar 
heterothallic isolates of S. brinkmannii might be taken  
as counter-argument [39]. Conversion from heterothal-
lism to homothallism by mutation of genes respon- 
sible for mating type specificity in one or more nuclei 
within the mycelium was regarded as improbable,  
since extensive mutagenesis programs in various basi-
diomycetes all failed to create such mutants [39]. Non-
etheless, switching events in mating types with gen-
eration of new specificities have subsequently been 
documented in certain monokaryotic strains of the 
tetrapolar Agaricomycete Agrocybe aegerita. Progenies 
with new mating types, however, germinated into 
monokaryons being self-sterile up to another event of 
mating type switching [40]. Therefore, mating type 
switching as such does not explain the occurrence of 
primary homothallism within the Agaricomycetes. 
Moreover, deletion of all mating type genes from  
a haploid genome as an alternative hypothesis for  
primary homothallism [39] can be ruled out since in 
C. cinerea a mutant missing functional A mating type 
genes and in S. commune a strain without the typical B 
mating type locus are available which both have the 

normal self-sterile monokaryon phenotypes [23, 26,  
41]. 
  Rare mutations to constitutive self-fertility are re-
ported in C. cinerea [42, 43] as well as in S. commune  
[44]. For the A mating type locus in C. cinerea, self-
compatibility was shown to be caused by chromoso- 
mal mutations fusing together parts of HD2 and HD1 
genes. The resulting chimeric genes encode products 
that overcome the need for the normal heterodimeriza-
tion between independent HD1 and HD2 proteins  
coming  from  different  mating  types  [41,  43].  Here,  
we have found evidence for (a) putative HD1-like gene(s) 
in the M. perniciosa C-biotype. HD2-like genes were miss-
ing in the available genome sequences but might have 
simply escaped sequencing so far. In C. cinerea, the  
homeodomains of the HD2 proteins are required for 
the regulatory functions of active transcription factor 
heterodimers as well as of the chimeric HD2-HD1  
mutant transcription factors [45, 46]. A potential loss  
of  HD2 genes thus would neither explain self-
compatibility nor expression of dikaryon-specific mor-
phological phenotypes. The available M. perniciosa se-
quences for (a) HD1-like gene(s) are not complete due  
to the short lengths of Contig1744 and CP02-PF-001-
002-G07-UC.R (Fig. 1). It currently cannot be ruled  
out that the sequences are part of chimeric HD2-HD1 
genes mediating self-compatibility as described in  
the constitutively activated A mating type mutants  
of  C. cinerea [41, 43]. Homothallism however could  
also easily be achieved if compatible HD1-like and HD2-
like genes are present in the same nucleus that en- 
code proteins able to heterodimerize to an active  
transcription factor complex allowing full function  
in regulation of dikaryon maintenance and fruiting 
events. 
 Mutations 

in 

C. cinerea and S. commune leading to self-

compatibility in B  and subsequent constitutive expres-
sion of B-mating-type-controlled processes either ren-
dered a pheromone receptor constitutive or changed 
the specificity of a pheromone receptor allowing it to 
interact with a pheromone encoded in the same B mat-
ing type locus or altered the specificity of a pheromone 
permitting it to recognize the self-pheromone receptors 
[26, 47, 48]. Thus, reaction to self-pheromones is lead-
ing to self-compatibility. A natural precedent for an 
autocrine signalling by wild type mating type phero-
mones is established in the bipolar C. neoformans pos-
sessing haploid yeast cells of the two mating types Matα 
and Mata, the first of which naturally undergoes low 
level of haploid fruiting due to a background self-
reaction by its pheromones. Deletion of mating type 
pheromone genes causes a defect in homothallic fruit-

background image

Journal of Basic Microbiology 2010, 50, 442 – 451 

Mating-type-like genes in Moniliophthora perniciosa 449 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

ing and overexpressing of mating type pheromones in 
Matα cells enhances the frequency of the fruiting [49, 
50]. Higher pheromone concentrations may thus over-
come poor binding to existent but badly fitting phero-
mone receptors. 
  In some basidiomycetes, bipolarity was obviously 
achieved by loss of the mating type control function of 
B-mating-type-like loci. The bipolar Agaricomycete Co-
prinellus
  disseminatus has such a locus with pheromone 
and pheromone receptor genes functional in regulation 
of dikaryon maintenance and fruiting but it is not 
linked to the single mating type locus with the HD1 and 
HD2 genes and it has no role in mating [10]. Phyloge-
netically, the C. disseminatus pheromone receptors clus-
ter closely with the B mating type pheromone receptors 
of  C. cinerea and L. bicolor [13] as two of the seven 
M. perniciosa pheromone receptors described in this 
study (Fig. 2). Moreover, in addition to B mating type or 
B-mating-type-like genes, tetra- and bipolar Agaricomy-
cetes can have more distantly-related non-mating-type 
pheromone receptor genes as well as non-mating-type 
pheromone genes [9–11, 13, 17, 25]. In C. neoformans
next to the two mating-type-specific pheromone recep-
tors CnSTE3a and CnSTE3α, a non-mating-type phero-
mone receptor homolog (CnCpr2 in Fig. 2) has recently 
been described that, strikingly, acts constitutively. Ex-
pression levels determine whether CnCpr2 can overtake 
regulatory functions exerted normally in mating and 
sexual reproduction by pheromones and pheromone 
receptors of opposite mating type and in haploid fruit-
ing in Matα cells by an autocrine mating-type phero-
mone signalling loop [20]. It is hence possible that any 
of the potential non-mating-type pheromone receptors 
discovered in the various Agaricomycetes including 
here the homothallic M. perniciosa C-biotype may simi-
larly act constitutively or, alternatively, in response to 
pheromones encoded in mating type loci or elsewhere 
in the genomes. 
  There are more possibilities to overcome the need for 
compatible mating in sexual reproduction, as loss  
of function mutants of gene pcc1 in C. cinerea mimic  
A-mating-type-regulated dikaryons [28, 29], overexpress-
ing  clp1  C. cinerea transformants produce clamp cells 
[30] and S. commune transformants fruit upon ectopic 
insertion of frt1 [31, 32]. Thus, changes in genes down-
stream to the mating type products can bypass the need 
of mating. In the M. perniciosa genome, we found poten-
tial homologues for clp1 and frt1. The list of genes de-
tected in this study therefore offers several options as 
how primary homothallism may have been generated 
in this fungus. 

References 

 [1] Mondego, J.M.C., Carazzolle, M.F., Costa, G.G.L., For-

mighieri, E.F. et al., 2008. A genome survey of Monili-

ophthora perniciosa gives insights into Witches’ Broom Di-

sease of cacao. BMC Genomics, 9, 548. 

  [2] Griffiths, G.W., Hedger, J.N., 1994. The breeding biology 

of biotypes of the witches’ broom pathogen of cocoa, Cri-

nipellis perniciosa. Heredity, 72, 278–289. 

  [3] Hedger, J.N., Pichering, V., Aragungi, J.A., 1987. Variabili-

ty of populations of the witches’ broom disease of cocoa 

(Crinipellis permiciosa). Trans. Br. Mycol. Soc., 88, 533–546. 

 [4] Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C.  

et al., 2008. Moniliophthora perniciosa, the causal agent of 

witches’ broom disease of cacao: what’s new from this old 

foe? Mol. Plant Pathol., 9, 577–588. 

 [5] de Arruda, M.C.C., Sepulveda Ch., G.F., Miller, R.N.G., 

Ferreira, M.A.S.V. et al., 2005. Crinipellis brasiliensis, a new 

species based on morphological and molecular data. My-

cologia, 97, 1348–1361. 

 [6] Griffith, G.W., Nicholson, J., Nenninger, A., Birch, R.N., 

Hedger, J.H., 2003. Witches’ brooms and frosty pods: two 

major pathogens of cacao. New Zealand J. Bot., 41, 423–

435. 

  [7] Griffiths, G.W., Hedger, J.N., 1994. Spatial distribution of 

mycelia of the liana (L-) biotype of the Agaric Crinipellis 

perniciosa (Stahel) Singer in tropical forest. New Phytol., 

127, 243–259. 

 [8] Casselton, L.A., Kües, U., 2007. The origin of multiple 

mating types in the model mushrooms Coprinopsis cinerea 

and  Schizophyllum commune. In: Heitman, J., Kronstad, J., 

Taylor, J.W. and Casselton, L.A. (eds.). Sex in fungi: Mo-

lecular determination and evolutionary implications. 

ASM Press, Washington, D.C., pp. 283–300. 

 [9] Aimi, T., Yohida, R., Ishikawa, M., Bao, D.P., Kita- 

moto, Y., 2005. Identification and linkage mapping of the 

genes for the putative homeodomain protein (hox1) and 

the putative pheromone receptor protein homologue 

(rcb1) in a bipolar basidiomycete, Pholiota nameko. Curr. 

Genet., 48, 184–194. 

[10] James, T.Y., Srivilai, P., Kües, U., Vilgalys, R., 2006. Evolu-

tion of the bipolar mating system of the mushroom Co-

prinellus disseminatus from its tetrapolar ancestors involves 

loss of mating-type-specific pheromone receptor function. 

Genetics, 172, 1877–1891. 

[11] Martinez, D., Challacome, J., Morgenstern, I., Hibbett, D. 

et al., 2009. Genome, transcriptome, and secretome of 

wood decay fungus Postia placenta supports unique me-

chanisms of lignocellulose conversion. Proc. Natl. Acad. 

Sci. USA, 106, 1954–1959. 

[12] Martinez, D., Larrondo, L.F., Putnam, N., Gelpke, M.D.S.  

et al., 2004. Genome sequence of the lignocellulose de-

grading fungus Phanerochaete chrysosporium strain RP78. 

Nature Biotech., 22, 695–700. 

[13] Niculita-Hirzel, H., Labbé, J., Kohler, A., le Tacon, F. et al.

2008. Gene organization of the mating type regions in the 

ectomycorrhizal fungus Laccaria bicolor reveals distinct 

evolution between the two mating type loci. New Phytol., 

180, 329–342. 

background image

450 

U. Kües and M. Navarro-González 

Journal of Basic Microbiology 2010, 50, 442 – 451 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

[14] Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: 

Molecular evolutionary genetic analysis (MEGA) software 

version 4.0. Mol. Biol. Evol., 24, 1596–1599. 

[15] Kües, U., Tymon, A.M., Richardson, W.V.J., May, G., Gie-

ser, P.T., Casselton, L.A., 1994. A mating-type factors of 

Coprinus cinereus have variable numbers of specificity gene 

encoding 2 classes of homeodomain proteins. Mol. Gen. 

Genet., 245, 45–52. 

[16]  Kües, U., James, T.Y., Vilgalys, R., Challen, M.P., 2001. The 

chromosomal region containing pab-1,  mip, and the A 

mating type locus of the secondarily homothallic homo-

basidiomycete Coprinus bilanatus. Curr. Genet., 39, 16–24. 

[17] James, T.Y., Liou, S.R., Vilgalys, R., 2004. The genetic 

structure and diversity of the A and mating-type genes 

from the tropical oyster mushroom, Pleurotus djamor. Fun-

gal Genet. Biol., 41, 813–825. 

[18] Ya, R., Tachikawa, T., Ishikawa, M., Mukaiyama, H. et al., 

2009. Genomic structure of the A mating type locus in a 

bipolar basidiomycete, Pholiota nameko. Mycol. Res., 113

240–248. 

[19] James, T.Y., Kües, U., Rehner, S.A., Vilgalys, R., 2004. 

Evolution of the gene encoding mitochondrial intermedi-

ate peptidase and its cosegregation with the A mating-

type locus of mushroom fungi. Fungal Genet. Biol., 41

381–390. 

[20] Hsueh, Y.-P., Xue, C., Heitman, J. (2009). A constitutively 

active GPCR governs morphogenic transitions in Crypto-

coccus neoformans. EMBO J., 28, 1220–1233. 

[21] Riquelme, M., Challen, M.P., Casselton, L.A., Brown, A.J., 

2005. The origin of multiple B mating specificities in 

Coprinus cinereus. Genetics, 170, 1105–1119. 

[22] Wendland, J., Vaillancourt, L.J., Hegner, J., Lengeler, K.B. 

et al., 1995. The mating-type locus Bα1 of Schizophyllum 

commune contains a pheromone receptor gene and puta-

tive pheromone genes. EMBO J., 14, 5271–5278. 

[23] Fowler, T.J., Mitton, M.F., Rees, E.I., Raper, C.A., 2004. 

Crossing the boundary between the  and  mating-

type loci in Schizophyllum commune. Fungal Genet. Biol., 41

89–101. 

[24] O’Shea, S.F., Chaure, P.T., Halsall, J.R., Olesnicky, N.S.  

et al., 1998. A large pheromone and receptor gene 

complex determines multiple B mating type specificities 

in Coprinus cinereus. Genetics, 148, 1081–1090. 

[25] Kües, U., Navarro-González, M., 2009. Communication of 

fungi on individual, species, kingdom and above kingdom 

levels. In: Anke, T., Weber, D. (eds.), The Mycota, Vol. 15. 

Physiology and Genetics. Selected Basic and Applied 

Aspects. Springer, Berlin, 79 –106. 

[26] Fowler, T.J., Mitton, M.F., Vaillancourt, L.J., Raper, C.A., 

2001. Changes in mate recognition through alterations of 

pheromones and receptors in the multisexual mushroom 

fungus Schizophyllum commune. Genetics, 158, 1491–1503. 

[27] Gola, S., Kothe, E., 2003. An expression system for the 

functional analysis of pheromone genes in the tetrapolar 

basidiomycete  Schizophyllum commune. J. Basic Microbiol., 

43, 104–112. 

[28] Murata, Y., Fujii, M., Zolan, M., Kamada, T., 1998. Molecu-

lar analysis of pcc1, a gene that leads to A-regulated sexual 

morphogenesis in Coprinus cinereus. Genetics, 149, 1753–

1761. 

[29] Murata, Y., Kamada, T., 2009. Identification of new mu-

tant alleles of pcc1 in the homobasidiomycete Coprinopsis 

cinerea. Mycoscience, 50, 137–139. 

[30] Inada, K., Morimoto, Y., Arima, T., Murata, Y., Kamada, 

T., 2001. The clp1 gene of the mushroom Coprinus cinereus 

is essential for A-regulated sexual development. Genetics, 

157, 133–140. 

[31] Horton, J.S., Raper, C.A., 1991. A mushroom-inducing 

DNA-sequence isolated from the basidiomycete, Schizophyl-

lum commune. Genetics, 129, 707–716. 

[32] Horton, J.S., Raper, C.A., 1995. The mushroom-inducing 

gene frt1 of Schizophyllum commune encodes a putative nuc-

leotide-binding protein. Mol. Gen. Genet., 247, 358–366. 

[33] Raper, J.R., 1966. Genetics of sexuality in higher fungi. 

Ronald Press, New York. 

[34] Kües, U., 2000. Life history and developmental processes 

in the basidiomycete Coprinus cinereus. Microbiol. Mol.  

Biol. Rev., 64, 316–353. 

[35] Kües, U., Granado, J.D., Hermann, R., Boulianne, R.P.  

et al., 1998. The A mating type and blue light regulate all 

known differentiation processes in the basidiomycete Co-

prinus cinereus. Mol. Gen. Genet., 260, 81–91. 

[36] Kües, U., Walser, P.J., Klaus, M.J., Aebi, M., 2002. Influ-

ence of activated A and B mating-type pathways on devel-

opmental processes in the basidiomycete Coprinus cinereus

Mol. Gen. Genom., 268, 262–271. 

[37] Liu, Y., Srivilai, P., Loos, S., Aebi, M., Kües, U., 2006. An 

essential gene for fruiting body initiation in the basidio-

mycete Coprinopsis cinerea is homologous to bacterial cyc-

lopropane fatty acid synthase genes. Genetics, 172, 873–

884. 

[38] Lemke, P.A., 1969. A reevaluation of homothallism, hete-

rothallism, and the species concept in Sistotrema brink-

mannii. Mycologia, 61, 57–76. 

[39] Ullrich, R.C., Raper, J.R., 1975. Primary homothallism – 

Relation to heterothallism in the regulation of sexual 

morphogenesis in Sistotrema. Genetics, 80, 311–321. 

[40] Labarère, J., Noël, T., 1992. Mating type switching in the 

tetrapolar basidiomycete Agrocybe  aegerita. Genetics, 131

307–319. 

[41] Pardo, E.H., O’Shea, S.F., Casselton, L.A., 1996. Mul-

 

tiple versions of the A mating type locus of Coprinus ciner-

eus are generated by three paralogous pairs of multiallelic 

homeobox genes. Genetics, 144, 87–94. 

[42] Swamy, S., Uno, I., Ishikawa, T., 1984. Morphogenetic 

effects of mutations at the A and B incompatibility factors 

in Coprinus cinereus. J. Gen. Microbiol., 130, 3219–3224. 

[43] Kües, U., Göttgens, B., Stratmann, R., Richardson, W.V.J. 

et al., 1994. A chimeric homeodomain protein causes self-

compatibility and constitutive sexual development in the 

mushroom Coprinus cinereus. EMBO J., 13, 4054–4049. 

[44] Raper, J.R., Boyd, D.H., Raper, C.A., 1965. Primary and 

secondary mutations at the incompatibility loci in Schi-

zophyllum. Proc. Natl. Acad. Sci. USA, 53, 1324–1332. 

[45]  Asante-Owusu, R.N., Banham, A.H., Böhnert, H.U., Mellor, 

E.J.C., Casselton, L.A., 1996. Heterodimerization between 

two classes of homeodomain proteins in the mushroom 

Coprinus cinereus brings together potential DNA-binding 

and activation domains. Gene, 172, 25–31.  

background image

Journal of Basic Microbiology 2010, 50, 442 – 451 

Mating-type-like genes in Moniliophthora perniciosa 451 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

[46] Spit, A., Hyland, R.H., Mellor, E.J.C., Casselton, L.A., 1998. 

A role for heterodimerization in nuclear localiza-

 

tion of a homeodomain protein. Proc. Natl. Acad. Sci. 

USA, 95, 6228–6233. 

[47] Olesnicky, N.S., Brown, A.J., Dowell, S.J., Casselton, L.A., 

1999. A constitutively active G-protein-coupled receptor 

causes mating self-compatibility in the mushroom Copri-

nus. EMBO J., 18, 2756–2763. 

[48] Olesnicky, N.S., Brown, A.J., Honda, Y., Dyos, S.L. et al., 

2000. Self-compatible B mutants in Coprinus with altered 

pheromone-receptor specificities. Genetics, 156, 1025–

1033. 

[49] Shen, W.-C., Davidson, R.C., Cox, G.M., Heitman, J., 2002. 

Pheromones stimulate mating and differentiation via 

paracrine and autocrine signaling in Cryptococcus neofor-

mans. Eukaryot. Cell, 1, 366–377. 

[50] Lin, X., Hull, C.M., Heitman, J., 2005. Sexual reproduction 

between partners of the same mating type in Cryptococcus 

neoformans. Nature, 434, 1017–1021.