background image

Journal of Basic Microbiology 2010, 50, 475 – 483 

475 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

www.jbm-journal.com 

Research Paper 

Applying target region amplification polymorphism markers 
for analyzing genetic diversity of Lentinula edodes
 in China 

Yang Xiao, Wei Liu, Ying-Ying Lu, Wen-Bing Gong and Yin-Bing Bian 

Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China 

The target region amplification polymorphism (TRAP) technique was utilized for assessing the 
genetic diversity of 55 wild strains and one cultivated strain of Lentinula edodes in China. From 
these strains, 932 DNA fragments were amplified using 12 primer combinations, 929 fragments 
(99.68%) of which were polymorphic between two or more strains. The average coefficient of 
pairwise genetic similarity was 0.696, within a range from 0.503 to 0.947. Cluster analysis and 
principal coordinate analysis separated the tested strains of L. edodes into two major groups. 
Group A was further divided into seven subgroups. In most cases, the strains from the same or 
adjoining regions could be preferentially clustered into small groups. The results from the 
average genetic similarity and the weighted average value of Shannon’s Information Index 
among the tested strains of L. edodes from the same region revealed a vast genetic diversity in 
the natural germplasm found in China. Compared with the L. edodes strains from other regions, 
those found on the Yunnan Plateau, in the Hengduanshan Mountains, in Taiwan, South China, 
and Northeast China showed greater genetic diversity. The results of the present study 
indicated that the wild strains of L. edodes in China possessed abundant genetic variation, and 
the genetic relationships among them were highly associated with the geographic distribution. 
This is the first report demonstrating that TRAP markers were powerful for analyzing the 
genetic diversity of L. edodes, and the study lays the foundation for a further application of this 
remarkable technique to other fungi. 

Abbreviations: Target region amplification polymorphism (TRAP); Restriction fragment length polymor-

phism (RFLP); Random-amplified polymorphic DNA (RAPD), Amplified fragment length polymorphism 

(AFLP), Inter-simple sequence repeats (ISSR), Simple sequence repeats (SSR); Sequence-related amplified 

polymorphism (SRAP); Expressed sequence tag (EST); Quantitative trait loci (QTL); Potato dextrose (PD) 

Keywords: Shiitake / DNA polymorphism / Genetic relationship 

Received: January 14, 2010; accepted: May 25, 2010 

DOI 10.1002/jobm.201000018 

Introduction

*

 

Lentinula edodes, widely known as shiitake or xianggu 
mushroom, is the second most cultivated edible mush-
room (after Agaricus bisporus) in terms of total world 
production. In 2003, the production of L. edodes in 
China was 2.227 million tons. This accounts for two-
thirds of the total production in the world [1]. 

                               
Correspondence: Prof. Yin-Bing Bian, Institute of Applied Mycology, 
Huazhong Agricultural University, Wuhan 430070, China 
E-mail: bybpaper@gmail.com; bianyinbing@mail.hzau.edu.cn 
Phone: +86-27-87282221 
Fax: +86-27-87287442 

  China stretches across vast tropical and subtropical 
areas with complex geographic environment and cli-
matic conditions, thus forming abundant natural 
germplasm of L. edodes. The rich germplasm creates 
favorable conditions for further breeding of superior 
varieties of L. edodes, ensuring the steady development 
of the L. edodes industry. An analysis of the genetic 
variation among the natural germplasms of L. edodes 
can play a crucial role in the effective utilization and 
protection of the natural resources. 
  Among the fungal genetic markers, DNA-based mo-
lecular markers are stable, accurate and independent of 
environmental impacts. They have been widely applied 
in DNA fingerprinting, strain identification and as

background image

476 Y. 

Xiao 

et al

Journal of Basic Microbiology 2010, 50, 475 – 483 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

 

Figure 1.  Geographical distribution of the 14 Chinese provinces from which the 56 shiitake strains were collected. 

 
 
sessment of genetic diversity. Hitherto, well-established 
molecular marker techniques for classifying and evalu-
ating genetic diversity in edible fungi include restric-
tion fragment length polymorphism (RFLP) [2], random-
amplified polymorphic DNA (RAPD) [3], amplified 
fragment length polymorphism (AFLP) [4], inter-simple 
sequence repeats (ISSR) [5], simple sequence repeats 
(SSR) [6], and sequence-related amplified polymorphism 
(SRAP) [7, 8]. 
  Target region amplification polymorphism (TRAP) is 
a fairly new marker technique that uses a fixed primer 
coupled with arbitrary primers to generate polymor-
phic DNA fragments. A fixed primer of about 18 nu-
cleotides is designed from the target sequence of an 
expressed sequence tag (EST) or gene, and an arbitrary 
primer of about the same length is designed with either 
an AT- or GC-rich core to anneal with an intron or 
exon, respectively [9, 10]. So, TRAP markers could be 
easily connected with target candidate ESTs or genes. 
Currently, more than ten thousands of EST sequences 
of L. edodes in GenBank can provide an abundant selec-
tion for designing the fixed-primer. 
  To date, the TRAP technique has been used success-
fully for fingerprinting lettuce and Porphyra  [11, 12], 
revealing the genetic diversity of sugarcane and spin-
ach germplasm [13, 14], and constructing genetic link-
age maps in wheat and sunflower [15, 16]. However, it 
has not yet been employed in fungal species. The first 

goal of the present study was to evaluate the usefulness 
of the TRAP technique in analyzing the genetic diver-
sity of L. edodes in China, and thereby to establish a new 
marker technique for fungal research. The second goal 
was to infer the genetic relationship among natural 
germplasms of L. edodes in China. 

Materials and methods 

Strains 
Fifty-five wild strains of L. edodes and one non-wild 
strain, LE271, cultivated in Taiwan for a long time, 
were surveyed in this study. The tested strains of 
L. edodes originated from 14 Chinese provinces covering 
a wide range of geographical and ecological conditions 
(Fig. 1). They were divided into eight populations ac-
cording to different floristic regions (Table 1) [17]. The 
56 strains were either collected from natural reserves 
and remote mountainous areas that are far from culti-
vation sites or were generously provided by profes-
sional research institutes. 

DNA extraction 
The mycelia of each tested strain of L. edodes were cul-
tured in potato dextrose (PD) broth at 25 °C for 2 weeks 
and were then collected by filtration. Genomic DNA 
was extracted from the mycelia via the method of Zhang

background image

Journal of Basic Microbiology 2010, 50, 475 – 483 

Biodiversity of Lentinula edodes in China 

477 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

Table 1.  Strains of L. edodes used in this study. 

Floristic region 

Province 

Number of strains  Strain no. 

Strain name 

Origin 

Northeast China 

Liaoning 

  1 

LNL076 

Shenyang 

 

 

 

  2 

LNL081 

Shenyang 

 

 

 

  3 

LNL075 

Shenyang 

 

 

 

  4 

LNL083 

Shenyang 

Northwest China 

Shanxi 

  5 

SHX002 

Liuba 

 

 

 

  6 

SHX007 

Liuba 

 

 

 

  7 

SHX012 

Liuba 

 

 

 

  8 

SHX029 

Liuba 

 

 

 

  9 

SHX044 

Liuba 

  

 

14 

SHX020 

Liuba 

  

 

15 

SHX021 

Liuba 

  

 

16 

SHX039 

Lvyang 

  

 

17 

SHX041 

Lvyang 

 Gansu 

20 

GAN046 

Kangxian

 

  

 

10 

GAN052 

Kangxian 

  

 

18 

GAN057 

Kangxian 

  

 

19 

GAN059 

Kangxian 

  

 

13 

GAN062 

Kangxian 

  

 

11 

GAN067 

Kangxian 

  

 

12 

GAN072 

Kangxian 

  

 

21 

GAN074 

Kangxian 

East China 

Anhui 

22 

ACCC50624 

Anhui

a

 

  

 

23 

ACCC50786 

Huangshang 

Mountain 

 Zhejiang 

24 

EFISAAS0340 

Qingyuan 

  

 

25 

EFISAAS0342 

Longquan 

Central China 

Hubei 

12 

28 

HUB004 

Hefeng 

  

 

29 

HUB016 

Hefeng 

  

 

35 

HUB028 

Shenlongjia 

  

 

36 

HUB037 

Shenlongjia 

  

 

37 

HUB049 

Shenlongjia 

  

 

32 

HUB071 

Shenlongjia 

  

 

30 

HUB084 

Xingshan 

  

 

31 

HUB086 

Xingshan 

  

 

38 

HUB087 

Xiangfen 

  

 

33 

HUB090 

Zhuxi 

  

 

34 

HUB091 

Chanyang 

  

 

39 

HUB021 

Hefeng 

 Hunan 

26 

HUN001 

Mangshan 

Mountain 

  

 

27 

HUN002 

Mangshan 

Mountain 

South China 

Guangxi 

42 

ACCC50741 

Guangxi

a

 

 Guangdong 

41 

ACCC50726 

Guangdong

a

 

 Fujian 

40 

SMI96025 

Yangshan 

Yunnan Plateau 

Yunnan 

47 

YUN039 

Wuding 

  

 

43 

YUN001 

Wuding 

  

 

44 

YUN105 

Wuding 

  

 

45 

YUN106 

Wuding 

  

 

46 

YUN107 

Wuding 

  

 

48 

YUN109 

Wuding 

  

 

51 

EFISAAS0350 

Lijiang 

  

 

52 

EFISAAS0351 

Jindong 

 Guizhou 

49 

ACCC50784 

Zunyi 

  

 

50 

EFISAAS0229 

Chaisan 

Hengduanshan Mountains 

Sichuan 

53 

SC002 

Dechang 

  

 

54 

SC010 

Qingchuan 

Taiwan Taiwan 

55 

WU9807-41 

Nantou 

  

 

56 

LE271 

Main 

cultivar 

a  

The exact location of collection is unknown. 

 
 
 

background image

478 Y. 

Xiao 

et al

Journal of Basic Microbiology 2010, 50, 475 – 483 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

and Molina [3]. The concentration and purity of the 
DNA samples were determined with a UV-1700 spectro-
photometer (Shimadzu, Japan) and diluted to 50 ng/μl. 

Primer design 
Twelve fixed primers were used in the current study, 
including 11 primers derived from shiitake ESTs or 
genes related to the development of the fruit body [18, 
19], and an additional one designed from the mating 
type gene of L. edodes [20] (Table 2). All the primers were 
designed by the web-derived software “Primer 

3” 

(http://frodo.wi.mit.edu/primer3/). The characteristics of 
the fixed primers are shown in Table 2. 
  The sequences of the arbitrary primers with an AT-
rich core sequence were as follows [21]: 5′-GACTGCGTA 
CGAAATTGC-3′ (ab2); 5′-GACTGCGTACGAAATGAC-3′ 
(ab3); 5′-GACTGCGTACGAAATTGA-3′ (ab4). The T

m

 val-

ues of the three arbitrary primers were 55, 55 and 
52.7 °C, respectively. 

TRAP PCR protocol 
Polymerase chain reaction (PCR) was carried out in a 
MyCycler thermal cycler (Bio-Rad, USA). Each PCR reac-
tion mixture (20 μl final volume) contained 1 × PCR 
buffer, 50 ng genomic DNA, 0.20 mM of each dNTP, 
2.0 mM  MgCl

2

, 0.625 μM fixed primer, 0.15 μM arbi-

trary primer, and 1.75 U Taq DNA polymerase (TaKaRa, 
Japan). The PCR amplification program consisted of the 
following conditions: 5 min initial denaturation at 
94 °C, 5 cycles of 1 min at 94 °C, 1 min at 35 °C, and 
1 min at 72 °C, followed by 35 cycles of 1 min at 94 °C, 
1 min at 50 °C, and 1 min at 72 °C and, finally, elonga-
tion at 72 °C for 7 min. The PCR products were run on a 
6% denaturing acrylamide gel at 60 W for about 2 h; 

then, the DNA fragments were visualized by silver ni-
trate staining. The large gels contain very many ampli-
fied DNA fragments. In order to well record the geno-
types of the tested strains, it would be better to analyze 
the gels directly instead of analyzing the photographs 
of the gels. A GeneRuler 50 bp DNA ladder (Fermentas, 
China) was used as molecular size marker. 

Data analysis 
The DNA fragments on the TRAP gel were manually 
scored with “1” for the presence and “0” for the ab-
sence of each genotype; then, the binary matrix was 
recorded as an Excel file for further computer analysis. 
The data were analyzed with the Numerical Taxonomy 
Multivariate Analysis System (NTSYS-pc), version 2.10e 
(Exeter Software, Setauket, NY, USA) software package 
[22]. The simple matching (SM) coefficient was used to 
calculate the pairwise genetic similarity (GS) matrix 
with the SIMQUAL option [23]. A dendrogram was then 
constructed based on the GS matrix by the unweighted 
pair group method with the arithmetic averaging algo-
rithm (UPGMA), employing the SAHN option. The co-
phenetic values were calculated to test the goodness-of-
fit between clusters and the data matrix, using the 
COPH and MXCOMP options. Principal coordinate ana-
lysis (PCoA) was likewise performed based on the vari-
ance-covariance matrix calculated from the TRAP data, 
using the DCENTER and EIGEN options. In addition, the 
POPGENE (1.32) software was used to calculate Shan-
non’s Information Index (h) [24]. Considering the differ-
ence in the number of strains from the eight regions, 
the weighted average value of Shannon’s Information 
Index (H) for each population was calculated according 
to the following formula: H = h/ln k

i

, where k

i

 is the

 

Table 2.  Fixed primers used in this study. 

Name GenBank 

 

accession no. 

T

[°C] 

Sequence (5–3

Homologue by BLAST search 

Act

AB195375 54.1 

TACCCTTTTCACCACCAC 

Actin 

(Schizophyllum commune

Ald

AB195326 52.8 

GTCAAATCCCAGGAAGAG 

Alcohol 

dehydrogenase 

 (Aspergillus nidulans

Eln

AB195388 

53.5 

AATCCTCTGGCACGATAG 

Hypothetical protein elns (Coprinus cinereus

Gnb

AB195334 

52.8 

AGCCTAATCCGATACTGC 

Guanine nucleotide binding protein γ-subunit (Lentinula 

edodes

CP

450

AB195349 

52.9 

CCATTAGCCCTGGTAGTC 

Cytochrome P450 2 Le.CYP2 (Lentinula edodes

Gpi

AB195404 52.4 

GACTCCCTTGGAGAAGAA 

Putative glucose-6-phosphate isomerase (Agaricus bisporus

Phd

AB195324 

53.4 

TGATCCAAGCTTCTACCC 

Phosphatidylserine decarboxylase 2 (Neurospora crassa

Pyd

AB195364 

53.2 

GGGGTGCTACTGACAACT 

Pyruvate decarboxylase (Hanseniaspora uvarum

Spp

AB195355 

53.1 

CGACCAAGAGGAAATAGG 

Sporulation protein SPS19 (Saccharomyces cerevisiae

Ubi

AB195403 53.4 

GAACCCTTTCCGACTACA 

Ubiquitin 

(Saccharomyces cerevisiae

Pri 

X60956 

52.8 

CCCTTCAGGAAAGTCTTG 

Developmentally regulated gene (Lentinula edodes

STE3

DQ480719 

53.3 

GACAGCTTCCCAAATCAT 

STE3 pheromone receptor gene (Lentinula edodes

a

  BLAST results quoted from Miyazaki et al. [18]. 

b

  The sole mating type gene used in this study [20] and 11 other genes associated with the development of the fruit body. 

background image

Journal of Basic Microbiology 2010, 50, 475 – 483 

Biodiversity of Lentinula edodes in China 

479 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

number of strains in population i [25]. A lower H value 
displayed a higher genetic similarity among strains 
from different regions. 

Results 

Polymorphism of the TRAP markers 
A total of 36 primer combinations (12 fixed primers in 
combination with 3 arbitrary primers) were initially 
screened using the DNA sample of 6 L. edodes strains, 12 
of which turned out to produce highly polymorphic 
fragments (Table 3). After two repetitive experiments, 
the 12 primer combinations produced 932 unambiguous 
and reproducible DNA fragments from the 56 strains, of 
which 929 (99.68%) were polymorphic. The sizes of the 
most amplified fragments ranged from 50 to 1000 bp, 
and the number of fragments detected by each primer 
combination varied from 41 to 115, with an average of 
77.67 fragments per primer combination (Table 3). 
  From the 56 tested strains of L. edodes, GS estimated 
by SM coefficient varied from 0.503 (ACCC50741 and 
LNL076) to 0.947 (SHX020 and SHX021), with an overall 
mean of 0.696. Based on the similarity coefficient ma-
trix, average GS values of the L. edodes strains for each 
region were calculated as follows: Northeast China 
(0.688), Northwest China (0.729), East China (0.747), 
Central China (0.746), South China (0.677), Yunnan 
Plateau (0.695), Hengduanshan Mountains (0.714), and 
Taiwan (0.725). 
  From the eight natural populations of L. edodes in 
China, the weighted average values of Shannon’s In-
formation Index were detected as follows: Northeast 
China (0.220), Northwest China (0.125), East China 
(0.175), Central China (0.123), South China (0.209), 
Yunnan Plateau (0.155), Hengduanshan Mountains 
(0.250), and Taiwan (0.240). 

Genetic relationships among the natural germplasms  
of L. edodes
 in China 
A dendrogram constructed from the SM coefficient 
matrix using the UPGMA method is shown in Fig. 2. 
Almost all the L. edodes strains were divided into two 
major groups at the 0.68 similarity value, with two 
distinct strains (LNL081 and ACCC50741) that were 
genetically distantly related to the others. Group B 
contained seven strains from Yunnan. Group A, includ-
ing the remaining 47 strains of L. edodes, was further 
divided into seven subgroups at the similarity level of 
0.71 (Fig. 2). Subgroup A

1

 consisted of three strains 

from Northeast China. Subgroup A

2

 included eleven 

strains from Northwest China and two strains from 
Yunnan and Hubei. Subgroup A

3

 contained ten strains 

from Hubei and five strains from Northwest China. 
Four strains from East China and two strains from 
South China were clustered in Subgroup A

4

, and three 

strains from Central China and one strain from North-
west China were included in Subgroup A

5

. Two Taiwan 

strains (LE271 and WU9807-41) were distributed into 
Subgroup A

6

. Subgroup A

7

 consisted of two Guizhou 

and two Sichuan strains collected from Southwest 
China. 
  Thirty of the 56 tested strains demonstrated similar-
ity values of over 0.73. These were further divided into 
15 small groups, each containing two strains originat-
ing from either the same province or from adjoining 
provinces, with the exception of one small group 
(HUB091 and GAN059) (Fig. 2). 
  The correlation between the similarity coefficient 
matrix and the cophenetic matrix derived from the tree 
produced by UPGMA was 0.88, corresponding to a 
strong goodness of fit. 
  PCoA was likewise performed based on the TRAP 
data matrix. According to the three principal axes of 
variation, the distribution of the different strains re-

 

Table 3.  Comparison of 12 primer combinations for TRAP analysis. 

Primer combination 

Total bands 

Polymorphic bands 

Percentage of polymorphism [%] 

Act + ab4 

  76 

  76 

100 

Ald + ab2 

  73 

  73 

100 

Eln + ab3 

  62 

  62 

100 

Gnb + ab2 

  97 

  97 

100 

CP

450

 + ab2 

  41 

  41 

100 

Gpi + ab4 

  81 

  81 

100 

Phd + ab3 

  79 

  79 

100 

Pyd + ab4 

  86 

  85 

  98.84 

Spp + ab4 

115 

114 

  99.13 

Ubi + ab2 

  67 

  67 

100 

Pri + ab4 

  65 

  65 

100 

STE3 + ab2 

  90 

  89 

  98.89 

Average 

  77.67 

  77.42 

  99.68 

background image

480 Y. 

Xiao 

et al

Journal of Basic Microbiology 2010, 50, 475 – 483 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

 

Figure 2.  Dendrogram derived using UPGMA cluster analysis based on the SM genetic similarity coefficient of 56 strains. The strain names 
refer to those listed in Table 1. 

 
 

vealed that the classification of the tested strains of 
L. edodes was similar to that of the UPGMA analysis (Fig. 
3). However, PCoA was unable to subdivide Group A 
into small groups. The first and second coordinates 
explained 7.4 and 5.8% of the total variation, respec-
tively. The first three Eigen vectors accounted for 
18.5% of the cumulative variation. 

 

 

Figure 3.  PCoA of 56 strains of L. edodes using TRAP data. The 
strain numbers are shown in Table 1. The first, second and third 
PCoA axis explained 7.4, 5.8 and 5.3% of the total variation, 
respectively. 

Discussion 

The average coefficient of pairwise GS was 0.696, vary-
ing from 0.503 to 0.947 and indicating the rich genetic 
variation among the strains of L. edodes from different 
regions of China. In the study, most strains were clearly 
distributed into two major groups (Fig. 2), while Group 
A was divided into seven subgroups according to the 
geographical origins of the tested strains. The cluster 
results demonstrated the tightly positive correlation 
with the geographical origins of the tested strains. It  
is worth mentioning that the two Taiwan strains 
(WU9807-41 and LE271) were clustered into Subgroup 
A

6

 in the UPGMA dendrogram, suggesting that these 

strains were possibly derived from the same origin. The 
smallest GS occurred between two strains: ACCC50741 
from Guangxi in Southern China and LNL076 from 
Liaoning in Northern China. The two provinces are 
situated within a very long geographical distance. In 
contrast, the largest GS occurred between two strains 
that both grew in Liuba County, Shanxi Province. Sun 
and Lin [17] explained that the disparity between natu-
ral geography and ecological environment was one of 
the factors impacting on the genetic divergence among 
strains from different regions across China. The abun-
dant genetic diversity of natural germplasms of L. edodes 

background image

Journal of Basic Microbiology 2010, 50, 475 – 483 

Biodiversity of Lentinula edodes in China 

481 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

resulted from the long-term interaction between the 
varied ecological environments and the genetic systems 
of L. edodes [17]. It therefore supports the finding of this 
study that the genetic diversity of L. edodes is closely 
correlated with the geographical origin. 
  The results of the present study revealed that three 
areas are exceptionally rich in genetic diversity of 
L. edodes. The first area is a plateau area in Southwest 
China, including the Hengduanshan Mountains and the 
Yunnan Plateau. The second area is a low-altitude coastal 
area in Southeast China, covering Taiwan and South 
China. The last area is high-latitude Northeast China. It 
is therefore reasonable to assume that special geographi-
cal conditions and various climates in these three areas 
could be favorable for the origin and evolution of 
L. edodes, thus forming the rich genetic diversity for shii-
take natural germplasm. In comparison, the genetic 
diversity of shiitake strains from Northwest, East and 
Central China was relatively low. The results of the pre-
sent study were overall consistent with those of previous 
RAPD and SSR studies [17, 26], which confirmed that the 
natural germplasms of L. edodes grown on the Yunnan 
Plateau, in the Hengduanshan Mountains, and in Tai-
wan and South China possess rich genetic diversity. 
  In cross-breeding of mushrooms, excellent hybrids 
derived from two parental strains with greater genetic 
distance between them based on molecular markers 
tend to show obvious heterosis in Stropharia rugoso-
annulata
 and L. edodes [27, 28]. Therefore, the genetic 
relationship detected by the present TRAP analysis has 
great value in further selecting hybrid parents for 
breeding elite strains of L. edodes.  
  All the strains of L. edodes used in the present TRAP 
analysis were identical to those used in a previous SSR 
analysis [26]. The results between the two analyses were 
overall complementary, which verified the reliability of 
the study on the genetic diversity of wild shiitake 
strains in China. In both analyses, cluster results well 
indicated the geographical distribution of the tested 
strains. Almost all the strains from the Yunnan and 
Liaoning Provinces could respectively cluster into small 
groups, indicating relative independence of these 
strains from the two provinces. The tested strains could 
be divided into three or two major groups in either the 
SSR or TRAP analyses. Every strain of the major Group 
A in the SSR analysis, except for GAN072, could be di-
vided into Subgroups A

1

 and A

2

 in the TRAP analysis. 

However, every strain of the major Group B in the SSR 
analysis could be distributed into Subgroups A

2

, A

3

, A

4

A

5

, A

6

 and A

7

 in the TRAP analysis. In addition, the 

major Group C in the SSR analysis corresponded to the 
major Group B in the TRAP analysis, which mainly 

included seven Yunnan strains. In contrast, the TRAP 
technique was very efficient for rapidly generating a 
large number of markers per PCR reaction, which was 
more informative for analyzing the genetic diversity of 
L. edodes. Therefore, the shiitake strains from the same 
floristic region possessed a stronger tendency to prefer-
entially cluster in TRAP analysis. For example, most 
Hubei strains were included in Subgroup A

3

 and all the 

Taiwan strains formed Subgroup A

6

. However, those 

strains could not cluster into subgroups in the SSR ana-
lysis. Like AFLP and ISSR markers, TRAP markers are 
dominant [15], but SSR markers are co-dominant [6]. 
Currently, due to the lack of enough SSR primers in 
L. edodes, TRAP markers would be more useful for a ge-
netic study on this economically important mushroom. 
 In both our SSR and TRAP analyses, strains 
ACCC50741 and LNL081 were outside the major groups 
in the UPGMA dendrograms. Strain ACCC50741 was 
from Guangxi Province, a large tropic area with various 
geographical conditions. In addition, the climate and 
temperature are changeable. The specific environment 
in which strain ACCC50741 can grow is very complex, 
resulting in the observation that this strain is geneti-
cally different from the other strains. As is well known, 
L. edodes is widely cultivated in China. Some shiitake 
strains could be introduced from one place to another 
for large-scale commercial cultivation. LNL081 may be 
an introduced strain from another place outside Liaon-
ing Province. So, all the strains from Liaoning, except 
for LNL081, were closely related with each other in 
both SSR and TRAP analyses. 
  TRAP has several advantages over other marker 
techniques: It is easy to operate (like RAPD), high in 
polymorphism (like AFLP), and suitable for primer de-
sign from the known sequences of putative genes [12]. 
So it is worth establishing such an excellent marker 
technique in fungal species. In this study, 41–115 DNA 
fragments were generated by each of the 12 primer 
combinations from the 56 strains. Compared with the 
ISSR and SRAP techniques in the previous studies on 
L. edodes [5, 8], the TRAP technique produced more DNA 
fragments per primer combination. A previous AFLP 
analysis generated 20–160 DNA fragments per primer 
pair [29], which was similar to that of our TRAP analy-
sis. In contrast to the previous genetic diversity studies 
on  L. edodes natural germplasm using RAPD, SSR and 
internal transcribed spacer (ITS) sequence analyses [17, 
26, 30], which were only able to investigate 147 loci, 
224 loci, and ITS genes of approximately 700 bp, respec-
tively, TRAP analysis attained 932 loci, which could 
provide more genetic information for assessing the 
genetic relationship among the tested strains of 

background image

482 Y. 

Xiao 

et al

Journal of Basic Microbiology 2010, 50, 475 – 483 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

L. edodes. The present results demonstrated that TRAP is 
a simple yet powerful technique for estimating the 
genetic diversity of L. edodes. Recently, Fu et al. [8] com-
pared three molecular marker techniques used for 
evaluating the genetic diversity of 23 main cultivars of 
L. edodes in China; their findings indicated that the ISSR 
technique is more sensitive than the RAPD and SRAP 
techniques. It would be very interesting to compare the 
TRAP technique with other molecular marker tech-
niques in a future study on the genetic diversity of 
shiitake cultivars. 
  We hypothesized that the high polymorphism pro-
duced by the TRAP markers could be attributed to three 
factors. Firstly, the rich genetic differentiation among 
L. edodes wild strains in China directly resulted in the 
polymorphic amplified DNA fragments. Secondly, mis-
matching due to the low annealing temperature would 
generate a lot of nonspecific amplified fragments [15]. 
Thirdly, by using the fixed-arbitrary primer pair, the 
TRAP technique yielded more fragments per PCR reac-
tion than the marker techniques that used only a single 
primer. 
  Although the fixed primers were designed from se-
quences of interesting ESTs or genes, it was difficult to 
distinguish which DNA fragments in TRAP-PCR ampli-
fication were associated with target sequences. Several 
papers report that only a small number of TRAP frag-
ments were related to targeted DNA sequences [11, 12, 
15]. As described by Hu et al. (2005), mismatching be-
tween the primers and the target sequences due to the 
low annealing temperature (35 °C) during the first five 
cycles of the amplification led to approximately 1% 
TRAP fragments from the desired genes [11]. It is rea-
sonable to postulate that most of the polymorphic 
TRAP fragments derived from nonspecific PCR amplifi-
cation. Anyway, by using the fixed-arbitrary primer 
combination, TRAP was more specific than the tech-
niques using only arbitrary primers. 
  In summary, TRAP provides an efficient and robust 
tool for analyzing the genetic diversity of L. edodes
Since the TRAP technique is simple, reliable, highly 
polymorphic, and easily associated with target genes, it 
could be attractive to apply the TRAP markers to fin-
gerprinting different strains, constructing a genetic 
linkage map, locating quantitative trait loci (QTL), and 
selecting good hybrids in fungi. 

Acknowledgements 

This work was financially supported by the National 
Key Technology R&D Program in the 11th Five-Year 
Plan of China (Grant No. 2008BADA1B02) and the In-

dustry (Agriculture), Science and Technology Plans of 
China (Grant No. nyhyzx07-008). 

References 

  [1] Chang, S.T., 2005. Witnessing the development of the 

mushroom industry in China. Acta Edulis Fungi, 12 (sup-

plement), 3–19. 

  [2] Rajiv, K., 1991. DNA polymorphisms in Lentinula edodes

the shiitake mushroom. Appl. Environ. Microbiol., 57

1735–1739. 

  [3] Zhang, Y., Molina, F., 1995. Strain typing of Lentinula 

edodes by random amplified polymorphic DNA assay. 

FEMS Microbiol. Lett., 131, 17–20. 

  [4]  Terashima,  K.,  Matsumoto, T., Hasebe, K., 2002. Genetic 

diversity and strain-typing in cultivated strains of Lentinu-

la edodes (the shiitake mushroom) in Japan by AFLP analy-

sis. Mycol. Res., 106, 34–39. 

  [5] Zhang, R., Huang, C., Zheng, S., Zhang, J., Ng, T.B. et al.

2007. Strain-typing of Lentinula edodes in China with inter 

simple sequence repeat markers. Appl. Microbiol. Bio-

technol., 74, 140–145. 

  [6] Foulongne-Oriol, M., Spataro, C., Savoie, J.M., 2009. Novel 

microsatellite markers suitable for genetic studies in the 

white button mushroom Agaricus bisporus. Appl. Microbi-

ol. Biotechnol., 84, 1125–1135 

  [7] Sun, S.J., Gao, W., Lin, S.Q., Zhu, J., Xie, B.G. et al., 2006. 

Analysis of genetic diversity in Ganoderma population 

with a novel molecular marker SRAP. Appl. Microbiol. 

Biotechnol., 72, 537–543. 

  [8] Fu, L.Z., Zhang, H.Y., Wu, X.Q., Li, H.B., Wei, H.L. et al.

2010. Evaluation of genetic diversity in Lentinula edodes 

strains using RAPD, ISSR, and SRAP markers. World J. 

Microbiol. Biotechonol., 26, 709–716 

  [9] Li, G., Quiros, C.F., 2001. Sequence related amplified 

polymorphism (SRAP), a new marker system based on a 

simple PCR reaction: its application to mapping and gene 

tagging in Brassica. Theor. Appl. Genet., 103, 455–461. 

[10] Hu, J.G., Vick, B.A., 2003. Target region amplification 

polymorphism: A novel marker technique for plant geno-

typing. Plant Mol. Biol. Rep., 21, 289–294. 

[11] Hu, J., Ochoa, O.E., Truco, M.J., Vick, B.A., 2005. Applica-

tion of TRAP technique to lettuce (Lactuca sativa L.) geno-

typing. Euphytica, 144, 225–235. 

[12] Qiao, L., Liu, H., Sun, J., Zhao, F., Guo, B. et al., 2007. Ap-

plication of target region amplification polymorphism 

(TRAP) technique to Porphyra (Bangiales, Rhodophyta) fin-

gerprinting. Phycologia, 46, 450–455. 

[13] Alwala, S., Suman A., Arro, J.A., Veremis, J.C., Kimbeng, 

C.A., 2006. Target region amplification polymorphism 

(TRAP) for assessing genetic diversity in sugarcane 

germplasm collections. Crop Sci., 46, 448–455. 

[14] Hu, J., Mou, B., Vick, B.A., 2007. Genetic diversity of 38 

spinach (Spinacia oleracea L.) germplasm accessions and 10 

commercial hybrids assessed by TRAP markers. Genet. 

Resour. Crop Evol., 54, 1667–1674. 

background image

Journal of Basic Microbiology 2010, 50, 475 – 483 

Biodiversity of Lentinula edodes in China 

483 

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

www.jbm-journal.com 

[15] Liu, Z.H., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, 

J.B. et al., 2005. A wheat intervarietal genetic linkage map 

based on microsatellite and target region amplified poly-

morphism markers and its utility for detecting quantita-

tive trait loci. Theor. Appl. Genet., 111, 782–794. 

[16] Chen, J., Hu, J., Vick, B.A., Jan C.C., 2006. Molecular map-

ping of a nuclear male-sterility gene in sunflower (Heli-

anthus annuus L.) using TRAP and SSR markers. Theor. 

Appl. Genet., 113, 122–127. 

[17] Sun, Y., Lin, F.C., 2003. Analysis of genetic diversity in 

natural germplasm of Lentinula edodes in China using 

RAPD technique. Mycosystema, 22, 387–393. 

[18]  Miyazaki, Y., Nakamura, M., Babasaki, K., 2005. Molecular 

cloning of developmentally specific genes by representa-

tional difference analysis during the fruiting body forma-

tion in the basidiomecete Lentinula edodes. Fungal Genet. 

Biol., 42, 493–503. 

[19]  Kajiwara, S., Yamaoka, K., Hori, K., Miyazawa, H., Saito, T. 

et al., 1992. Isolation and sequence of a developmentally 

regulated putative novel gene, priA, from the basidiomy-

cete Lentinus edodes. Gene, 114, 173–178. 

[20] Li, A.Z., Xu, X.F., Lin, F.X., Cheng, S.M., Lin, F.C., 2007. 

Cloning and identification of DNA for B mating factor in 

Lentinula edodes using degenerate PCR. World J. Microbiol. 

Biotechonol., 23, 411–415. 

[21] Lin, F.X., 2007. Construction of a molecular genetic map 

and analysis of quantitative trait locus in Lentinula edodes

(Ph D dissertation). Wuhan: Huazhong Agricultural Uni-

versity. 

[22] Rohlf, F.J., 2000. NTSYS-pc: Numerical Taxonomy and 

Multivariate Analysis System. Version 2.1. Exeter Publica-

tions, New York, USA. 

[23] Sokal, R.R., Michener, C.D., 1958. A statistical method for 

evaluating systematic relationships. Univ. Kans. Sci. Bull., 

38, 1409–1438. 

[24] Lewontin, R.C., 1973. Population genetics.  Annu. Rev. 

Genet., 7, 1–17. 

[25] Sheldon, A.L., 1969. Equibility indices: dependence on the 

species count. Ecology, 50, 466–467. 

[26] Xiao, Y., Liu, W., Dai, Y., Fu, C., Bian, Y., 2010. Using SSR 

markers to evaluate the genetic diversity of Lentinula edo-

des’ natural germplasm in China. World J. Microbiol. Bio-

techonol., 26, 527–536. 

[27] Yan, P.S., Jiang, J.H., 2005. Preliminary research of the 

RAPD molecular marker-assisted breeding of the edible 

basidiomycete  Stropharia rugoso-annulata. World J. Micro-

biol. Biotechnol., 21, 559–563. 

[28]  Wang, Z.Y., Wang, S.T., 2006. Analysis of genetic diversity 

and heterosis of Lentinula edodes strains in Anhui Province 

of China using ISSR. Mycosystema, 25, 211–216. 

[29] Zhuo, Y., Tan, Q., Chen, M.J., Cao, H., Jia, Y.N. et al., 2006. 

AFLP analysis of genetic diversity in main cultivated 

strains of Lentinula edodes. Mycosystema, 25, 203–210. 

[30] Xu, X.F., Li, A.Z., Chen, S.M., Lin, F.C., Lin, F.X., 2005. 

Genetic diversity of natural germplam of Lentinula edodes 

in China inferred from rDNA sequences. Mycosystema, 

24, 29–35. 

 
 

((Funded by 
•  National Key Technology R&D Program in the 11th 
Five-Year Plan of China; grant number: 2008BADA1B02 
•  Industry (Agriculture), Science and Technology Plans 
of China; grant number: nyhyzx07-008))