2005 12 05 prawdopodobie stwo i statystyka

background image

Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Prawdopodobieństwo i Statystyka

Zadanie 1

N – ilość którzy doszli do 3 etapu
P(K+M=k)=P(N=n-k)

P(dojdzie do 3 etapu)=

25

4

5

2

)

1

(

2

2

=

=

θ

n

k

k

n

k

k

k

n

k

n

k

k

n

k

n

k

n

k

n

n

k

M

K

P

2

2

5

21

4

25

21

4

4

25

5

1

25

21

25

4

)

(





=





=





=

=

+


Zadanie 2

[

]

=

+

+

=

=

60

7

6

120

40

40

120

40

...

)

1

(

)

1

(

)

1

(

)

6

(

)

1

(

θ

θ

θ

θ

θ

θ

T

P

θ

θ

L

480

40

60

360

60

120

40

)

1

(

)

1

(

)

1

(

θ

θ

θ

θ

θ

θ

θ

=

=

)

1

ln(

480

ln

40

ln

θ

θ

L

+

=

13

1

520

40

ˆ

0

)

1

(

40

520

)

1

(

480

)

1

(

40

1

480

40

=

=

=

+

=

=

=

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

Zadanie 3

(

)

=

2

2

2

Z

n

Z

Z

Z

i

i

Y

X

Y

X

Y

X

Z

i

i

i

=

=

(

)



15

2

;

0

2

;

0

2

2

σ

N

Z

σ

N

Z

(

)

(

)

=

>

+

=

>

+

2

2

2

2

2

2

15

1

15

15

1

c

Z

Z

Z

Z

P

c

Z

Z

Z

Z

P

i

i

(

)

gdzie

c

X

Y

X

P

c

σ

Z

σ

Z

Z

σ

Z

P

i

,

2

15

2

2

15

2

2

2

2

2

2

>

+

=

>



+



=

nzl

i

)

14

(

),

1

(

2

2

χ

Y

χ

X

background image

}

4973

,

0

6

,

4

1

14

1

14

14

2

2

2

2

)

14

;

1

(

=

>

=

c

c

c

c

c

Y

X

P

F


Zadanie 4

)

1

,

0

(

J

p

(

)

12)

w

P(7

T)

12

w

7

(

12

7

+

=

×

P

T

P

(

)





+

+





=

+

+





=





=

1

0

1

0

5

4

3

2

8

5

7

14

1

13

5

12

10

11

10

2

1

9

1

7

12

5

10

10

5

1

7

12

)

1

(

7

12

p

p

p

p

p

p

p

p

p

LICZ





+

+





=





=

1

0

5

7

13

1

12

5

11

10

10

10

9

5

8

1

7

12

)

1

(

7

12

p

p

MIAN

14

8

=

MIAN

LICZ


Zadanie 5

(

)

i

i

X

X ,

2

- STAT dostateczna i zupełna

weźmy naturalnie:

nzl

,

i

9

;

,

,

ˆ

2

2

S

X

σ

µ

N

X

S

σ

X

µ



=

=

(

)

)

8

(

gdzie

8

3

0

3

2

)

8

(

χ

X

X

σ

E

S

E

S

µ

X

E

t



=

=

4

8

47

6

=

Γ

=

Γ

=



0

0

2

/

1

2

7

4

2

/

3

4

5

,

0

)

4

(

2

1

8

)

4

(

2

1

1

8

8

x

x

e

x

σ

e

x

x

σ

X

σ

E

Γ

=

Γ

Γ

=

Γ

Γ

Γ

=

0

5

,

3

2

1

2

7

5

,

3

4

)

5

,

3

(

3

1

)

4

(

)

5

,

3

(

2

8

)

5

,

3

(

2

)

5

,

3

(

2

1

)

4

(

2

1

8

σ

σ

dx

e

x

σ

x

Γ

=

Γ

=

)

5

,

3

(

)

5

,

3

(

3

1

3

3

σ

µ

σ

µ

S

µ

E

σ

µ

S

X

E

σ

µ

S

X

E

=





Γ

Γ

=





)

5

,

3

(

3

)

5

,

3

(

3

i statystyka dostateczna i zupełna

Z tego odpowiedź (B) jest prawidłowa

Zadanie 6

3

N - liczba kostek w III rundzie

2

N

- liczba kostek w II rundzie

background image

( )

(

)

=

=

=

3

0

3

)

(

k

k

N

P

k

A

P

A

P

(

)

(

)

(

)

=

=

=

=

=

=

3

2

2

3

3

k

m

m

N

P

m

N

k

N

P

k

N

P

(

)

3

2

6

1

0

=

=

N

P

(

)

3

2

2

6

15

6

1

6

5

1

3

1

=





=

=

N

P

(

)

3

2

2

6

75

6

1

6

5

2

3

2

=





=

=

N

P

(

)

3

3

2

6

125

6

5

3

3

3

=





=

=

N

P

(

)

1

0

0

2

3

=

=

=

N

N

P

(

)

6

1

1

0

2

3

=

=

=

N

N

P

(

)

2

2

3

6

1

2

0

=

=

=

N

N

P

(

)

3

2

3

6

1

3

0

=

=

=

N

N

P

(

)

6

5

1

1

2

3

=

=

=

N

N

P

(

)

6

1

6

5

2

2

1

2

3

=

=

=

N

N

P

(

)

2

2

3

6

1

6

5

3

3

1

=

=

=

N

N

P

(

)

2

2

3

6

5

2

2

=

=

=

N

N

P

(

)

6

1

6

5

3

3

2

2

2

3

=

=

=

N

N

P

(

)

3

2

3

6

5

3

3

=

=

=

N

N

P

(

)

6

3

3

3

2

3

3

3

6

1331

6

125

6

1

6

75

6

1

6

15

6

1

6

1

0

=

+

+

+

=

=

N

P

(

)

6

3

3

3

2

2

3

6

9075

6

125

6

15

6

75

6

10

6

15

6

5

1

=

+

+

=

=

N

P

(

)

6

3

3

3

2

3

6

20625

6

125

6

75

6

75

6

25

2

=

+

=

=

N

P

(

)

6

3

3

3

6

15625

6

125

6

125

3

=

=

=

N

P


background image

(

)

(

)

(

)

=

=

+

=

+

=

+

=

=

)

0

(

1

3

6

1

2

6

1

1

6

1

)

(

3

3

3

2

3

N

P

N

P

N

P

N

P

A

P

075

,

0

6

1331

6

15625

20625

6

9075

36

9

3

+

+

+

=


Zadanie 7

(

)

t

X

nE

ODP

=

=

max

1

(

) (

)

(

)

(

)

(

)

max

max

max

1

1

1

1

1

1

1

<

<

+

=

=

=

=

X

P

t

X

X

E

X

P

t

X

X

E

t

X

E

(

)

(

)

=

=

=

<

=

<

t

t

t

t

t

x

t

t

X

P

x

t

X

X

E

0

3

4

0

2

4

1

3

1

1

4

3

1

4

3

3

1

4

3

1

3

(

)

n

tn

t

n

t

tn

t

n

n

t

n

t

t

X

E

4

3

4

3

3

4

1

4

3

1

max

1

+

=

+

=

+

=

=

t

n

n

n

t

n

ODP

4

1

3

4

)

3

1

(

+

=

+

=


Zadanie 8

(

)

(

)

(

)

j

j

i

i

i

i

i

i

X

Z

X

Z

n

X

Z

n

X

Z

,

cov

2

2

var

var





+

=

(

)

(

)

(

)

(

)

(

)

p

µ

µ

p

µ

p

µ

Z

P

Z

X

Z

E

Z

P

Z

X

Z

E

X

Z

E

i

i

i

i

i

i

i

i

i

i

2

)

(

)

1

(

1

1

1

1

=

+

=

=

=

+

=

=

=

(

) ( )

2

2

2

2

2

µ

σ

X

E

X

Z

E

i

i

i

+

=

=

(

)

(

)

2

2

2

2

var

p

µ

µ

µ

σ

X

Z

i

i

+

=

(

)

(

)

[

]

2

2

2

)

2

1

(

µ

ρσ

p

X

X

E

EZ

EZ

X

X

Z

Z

E

j

i

j

i

j

i

j

i

+

=

=

[

]

(

)

(

)

(

)

[

]

=

+

+

+

=

2

2

2

2

2

2

2

2

2

1

)

1

(

)

2

(

p

µ

µ

µ

ρσ

p

n

n

p

µ

µ

µ

σ

n

ODP

[

]

(

)

[

]

X

µ

µ

p

ρσ

p

µ

p

ρσ

p

µ

ρσ

n

n

p

µ

p

µ

µ

µ

σ

n

+

+

+

+

+

+

+

=

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

gdzie

2

2

2

4

4

p

µ

p

µ

X

=

(

)

)

1

(

4

)

2

1

(

)

1

(

1

2

2

2

p

p

µ

n

p

ρ

n

σ

n

+

+

=


Zadanie 9

( ) ( )

)

3

,

2

(

)

2

(

)

3

(

9

9

)

(

)

(

)

3

(

2

1

0

)

3

(

1

3

T

n

e

n

T

θ

e

θ

e

θ

e

θ

x

f

θ

f

θ

x

f

x

θ

f

θ

T

n

n

θ

T

n

θ

x

θ

n

i

+

+

Γ

+

Γ

+

=

=

=

+

+

+

+

+

2

)

3

(

)

2

(

9

3

2

+

+

+

Γ

=

+

=

+

=

=

n

T

n

T

β

n

α

MIAN

(

)

2

1

3

3

+

+

+

=

n

a

a

θ

T

T

e

x

e

E

background image

( )

)

(

1

3

2

2

3

2

a

f

a

T

n

T

T

e

x

L

E

n

a

=

+

+

+

+

+

=

+

2

2

2

3

0

1

2

3

)

(

+

+

+

+

=

=

+

+

+

=

n

a

n

a

T

T

e

T

T

e

a

f

T

T

n

a

+

+

+

=

2

3

ln

)

2

(

Zadanie 10



Π

>

+

=

>

Π

=

>

Π

+

t

x

x

P

t

e

P

t

e

e

P

x

x

x

x

2

2

ln

2

2

2

2

1

2

1

2

2

2

2

2



Π

>

>



Π

>

+

<

t

x

x

P

x

t

x

x

P

x

2

2

ln

2

0

.

2

2

2

ln

2

0

.

1

2

2

Π

+

=

t

2

2

ln

2

1

w obu przypadkach taka sama

dla 1:

+

=

=

1

,

1

2

1

x

x

dla 2:

+

=

=

1

,

1

4

3

x

x

z tego

1

x

najmniejsze więc równe –1,9

Z tego:

9

,

1

2

2

ln

2

1

1

=

Π

+

t

81

,

0

2

2

ln

2

1

=

Π

+

t

19

,

0

2

2

ln

2

=

Π

t

095

,

0

ln(...)

=

9

,

0

81

,

0

095

,

0

2

1

=

=

=

9

,

1

;

1

,

0

;

1

,

0

,

9

,

1

4

3

2

1

=

=

=

=

x

x

x

x

)

;

9

,

1

(

)

1

,

0

;

1

,

0

(

)

9

,

1

;

(

−∞

=

K

137

,

0

)

(

0

K

P


Wyszukiwarka

Podobne podstrony:
2005.12.05 prawdopodobie stwo i statystyka
1998.12.05 prawdopodobie stwo i statystyka
1998 12 05 prawdopodobie stwo i statystykaid 18587
2000 12 09 prawdopodobie stwo i statystykaid 21582
2010 12 13 prawdopodobie stwo i statystykaid 27016
2007 12 03 prawdopodobie stwo i statystykaid 25662
2003.12.06 prawdopodobie stwo i statystyka
2003 12 06 prawdopodobie stwo i statystykaid 21710
2008 12 15 prawdopodobie stwo i statystykaid 26466
2007.12.03 prawdopodobie stwo i statystyka
1996.12.07 prawdopodobie stwo i statystyka
2008.12.15 prawdopodobie stwo i statystyka
2009.10.05 prawdopodobie stwo i statystyka
2006 06 05 prawdopodobie stwo i statystykaid 25461
2009 10 05 prawdopodobie stwo i statystykaid 26670
2000.12.09 prawdopodobie stwo i statystyka
2005.01.17 prawdopodobie stwo i statystyka
1997.04.05 prawdopodobie stwo i statystyka

więcej podobnych podstron