Wytrzymalosc Materialow wyklad 17A Ciegna nierozciagliwe 2007 8


Wytrzymałość Materiałów Budownictwo, Rok II, Semestr III
CIGNA
część A
cięgna nierozciągliwe
WYKAAD 18 A
Literatura
Rozdz. XIII, str. 211, BIELEWICZ E.: Wytrzymałość materiałów. PG, Gdańsk 1992 (lub inne wydania).
str. 29, CHRÓŚCIELEWSKI J.: Materiały pomocnicze do wykładu z Wytrzymałości Materiałów.
Wersja elektroniczna, http://www.okno.pg.gda.pl.
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/1
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgno  model fizyczny konstrukcji wiszących (wiotkich), np.: liny, łańcuchy, kable, wanty, itp.,
 pomijana sztywność na zginanie,
 przenoszą tylko rozciąganie,
 w klasycznym podejściu zakład się, że są nierozciągliwe, tj. długość L = const ;
Cięgno pracuje tylko na rozciąganie, jedyna siła wewnętrzna to siła normalna  styczna do osi cięgna.
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/2
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgno  model fizyczny konstrukcji wiszących (wiotkich), np.: liny, łańcuchy, kable, wanty, itp.,
 pomijana sztywność na zginanie,
 przenoszą tylko rozciąganie,
 w klasycznym podejściu zakład się, że są nierozciągliwe, tj. długość L = const ;
Cięgno pracuje tylko na rozciąganie, jedyna siła wewnętrzna to siła normalna  styczna do osi cięgna.
Charakterystyka zagadnienia:
 zmienny schemat geometryczny zależy od obciążenia
! nie obowiązuje zasada zesztywnienia,
 duże przemieszczenia, zagadnienie geometrycznie nieliniowe
! nie obowiązuje zasada superpozycji;
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/3
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgno  model fizyczny konstrukcji wiszących (wiotkich), np.: liny, łańcuchy, kable, wanty, itp.,
 pomijana sztywność na zginanie,
 przenoszą tylko rozciąganie,
 w klasycznym podejściu zakład się, że są nierozciągliwe, tj. długość L = const ;
Cięgno pracuje tylko na rozciąganie, jedyna siła wewnętrzna to siła normalna  styczna do osi cięgna.
Charakterystyka zagadnienia:
 zmienny schemat geometryczny zależy od obciążenia
! nie obowiązuje zasada zesztywnienia,
 duże przemieszczenia, zagadnienie geometrycznie nieliniowe
! nie obowiązuje zasada superpozycji;
Nierozciągliwość cięgna, można założyć dla obciążeń podstawowych,
bowiem parametry geometryczne cięgna:
strzałka zwisu f i długość L, są regulowane w fazie montażu
układu wiszącego siłą poziomą H (naciągiem w zakotwieniu czynnym).
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/4
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgno  model fizyczny konstrukcji wiszących (wiotkich), np.: liny, łańcuchy, kable, wanty, itp.,
 pomijana sztywność na zginanie,
 przenoszą tylko rozciąganie,
 w klasycznym podejściu zakład się, że są nierozciągliwe, tj. długość L = const ;
Cięgno pracuje tylko na rozciąganie, jedyna siła wewnętrzna to siła normalna  styczna do osi cięgna.
Charakterystyka zagadnienia:
 zmienny schemat geometryczny zależy od obciążenia
! nie obowiązuje zasada zesztywnienia,
 duże przemieszczenia, zagadnienie geometrycznie nieliniowe
! nie obowiązuje zasada superpozycji;
Nierozciągliwość cięgna, można założyć dla obciążeń podstawowych,
bowiem parametry geometryczne cięgna:
strzałka zwisu f i długość L, są regulowane w fazie montażu
układu wiszącego siłą poziomą H (naciągiem w zakotwieniu czynnym).
Zasadnicze problemy w analizie statycznej cięgien to wyznaczenie:
 kształtu cięgna,
 reakcji utrzymujących,
 siły normalnej w cięgnie;
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/5
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
 ciężar q = const (pionowy, na jednostkę długości s),
 cięgno nierozciągliwe o długości L = const ,
 punkty zawieszenia na tej samej wysokości
w rozstawie poziomym (rozpiętości) l < L,
 strzałce zwisu dowolna f ;
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/6
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
 ciężar q = const (pionowy, na jednostkę długości s),
 cięgno nierozciągliwe o długości L = const ,
 punkty zawieszenia na tej samej wysokości
w rozstawie poziomym (rozpiętości) l < L,
 strzałce zwisu dowolna f ;
równanie różniczkowe linii zwisu
zależności geometryczne wycinka różniczkowego:
dx dy dy
2
(ds)2= (dx)2+ (dy)2, ds == , tg = = y ;
cos sin dx
rozkład siły rozciągającej w cięgnie:
H V dy
2
N == ! V = H tg = H = H y ;
cos sin dx
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/7
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
 ciężar q = const (pionowy, na jednostkę długości s),
 cięgno nierozciągliwe o długości L = const ,
 punkty zawieszenia na tej samej wysokości
w rozstawie poziomym (rozpiętości) l < L,
 strzałce zwisu dowolna f ;
równanie różniczkowe linii zwisu
zależności geometryczne wycinka różniczkowego:
dx dy dy
2
(ds)2= (dx)2+ (dy)2, ds == , tg = = y ;
cos sin dx
rozkład siły rozciągającej w cięgnie:
H V dy
2
N == ! V = H tg = H = H y ;
cos sin dx
warunki równowagi: " Px=0 ! -H + (H + dH ) = 0 ! dH = 0 ! H = const ,
dV
" Py=0 ! -V + qds + (V + dV ) = 0 ! = -q ,
ds
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/8
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
 ciężar q = const (pionowy, na jednostkę długości s),
 cięgno nierozciągliwe o długości L = const ,
 punkty zawieszenia na tej samej wysokości
w rozstawie poziomym (rozpiętości) l < L,
 strzałce zwisu dowolna f ;
równanie różniczkowe linii zwisu
zależności geometryczne wycinka różniczkowego:
dx dy dy
2
(ds)2= (dx)2+ (dy)2, ds == , tg = = y ;
cos sin dx
rozkład siły rozciągającej w cięgnie:
H V dy
2
N == ! V = H tg = H = H y ;
cos sin dx
warunki równowagi: " Px=0 ! -H + (H + dH ) = 0 ! dH = 0 ! H = const ,
dV
" Py=0 ! -V + qds + (V + dV ) = 0 ! = -q ,
ds
2 2
uwzględniając V = H y i ds = (dx)2+ (dy)2 = dx 1+ (y )2 , otrzymuje się równanie różniczkowe linii zwisu:
2 2 2
dV d(H y ) d(y ) d(y ) dx dx
2 2 2 2 2
= = H = H = H y = -q ! H y =-q 1+ ( y )2 .
ds ds ds dx ds ds
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/9
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
całkowanie równania linii zwisu cięgna
H
2 2 2 2
oznaczając z = y , ą = , równanie H y =-q 1+ (y )2 przekształca się do postaci:
q
dz 1
=- dx
1+ z2 ą
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/10
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
całkowanie równania linii zwisu cięgna
H
2 2 2 2
oznaczając z = y , ą = , równanie H y =-q 1+ (y )2 przekształca się do postaci:
q
dz 1 1
=- dx ! arcsinhz = - (x + c1)
ą
1+ z2 ą
a) całkując je obustronnie
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/11
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
całkowanie równania linii zwisu cięgna
H
2 2 2 2
oznaczając z = y , ą = , równanie H y =-q 1+ (y )2 przekształca się do postaci:
q
dz 1 1 x + c1
2
=- dx ! arcsinhz = - (x + c1) ! y a" z = -sinh
ą ą
1+ z2 ą
a) całkując je obustronnie, b) odwracając arcsinh
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/12
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
całkowanie równania linii zwisu cięgna
H
2 2 2 2
oznaczając z = y , ą = , równanie H y =-q 1+ (y )2 przekształca się do postaci:
q
dz 1 1 x + c1 x + c1
2
=- dx ! arcsinhz = - (x + c1) ! y a" z = -sinh ! y = -ą cosh + c2 ;
ą ą ą
1+ z2 ą
a) całkując je obustronnie, b) odwracając arcsinh c) całkując ponownie mamy.
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/13
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
całkowanie równania linii zwisu cięgna
H
2 2 2 2
oznaczając z = y , ą = , równanie H y =-q 1+ (y )2 przekształca się do postaci:
q
dz 1 1 x + c1 x + c1
2
=- dx ! arcsinhz = - (x + c1) ! y a" z = -sinh ! y = -ą cosh + c2 ;
ą ą ą
1+ z2 ą
a) całkując je obustronnie, b) odwracając arcsinh c) całkując ponownie mamy.
1
x + c1 l + c1 l
2
2 2
1) warunek symetrii y |x = l = 0, y =-sin h ! 0 =-sin h ! c1 = - ,
1
2
ą ą 2
1
x + c1 - l
l
# ś#;
2
2) warunek brzegowy y |x = 0= 0, y = -ą cosh + c2 ! 0 = -ą cosh + c2 ! c2 = ą cosh
ś# ź#
ą ą
2ą
# #
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/14
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
całkowanie równania linii zwisu cięgna
H
2 2 2 2
oznaczając z = y , ą = , równanie H y =-q 1+ (y )2 przekształca się do postaci:
q
dz 1 1 x + c1 x + c1
2
=- dx ! arcsinhz = - (x + c1) ! y a" z = -sinh ! y = -ą cosh + c2 ;
ą ą ą
1+ z2 ą
a) całkując je obustronnie, b) odwracając arcsinh c) całkując ponownie mamy.
1
x + c1 l + c1 l
2
2 2
1) warunek symetrii y |x = l = 0, y =-sin h ! 0 =-sin h ! c1 = - ,
1
2
ą ą 2
1
x + c1 - l
l
# ś#;
2
2) warunek brzegowy y |x = 0= 0, y = -ą cosh + c2 ! 0 = -ą cosh + c2 ! c2 = ą cosh
ś# ź#
ą ą
2ą
# #
1
H
lx - l ql q(x - l)
#cosh - cosh 1 ś# #cosh - cosh
2
linia zwisu y = ą =2 ś#  krzywa łańcuchowa,
ś#ź# ś#ź#
q
# 2H
# 2ąą # H #
linia zwisu y jest nieliniową funkcją składowej poziomej H niewiadome siły rozciągającej N w cięgnie.
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/15
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
Siła rozciągająca N cięgno, a przez to składowa pozioma H , zależy:
od przyjętej długości cięgna L lub równoważnie od bardziej przydatnej w praktyce
założonej strzałce zwisu cięgna f a" y |x = l , stąd
1
2
Hql ql
f = [cosh -1] ! H = [cosh -1]-1q f
q 2H 2H
jest nieliniową funkcją H .
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/16
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
Siła rozciągająca N cięgno, a przez to składowa pozioma H , zależy:
od przyjętej długości cięgna L lub równoważnie od bardziej przydatnej w praktyce
założonej strzałce zwisu cięgna f a" y |x = l , stąd
1
2
Hql ql
f = [cosh -1] ! H = [cosh -1]-1q f
q 2H 2H
jest nieliniową funkcją H .
ql
(*)
Rozwiązanie przybliżone H = [cosh -1]-1q f można uzyskać stosując np. metodę iteracji prostej.
2H
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/17
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
ql
(*)
rozwiązanie przybliżone H = [cosh -1]-1q f , metoda iteracji prostej:
2H
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/18
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
ql
(*)
rozwiązanie przybliżone H = [cosh -1]-1q f , metoda iteracji prostej:
2H
ql
1. równaniu wyjściowemu(*) nadaje się charakterystyczną dla iteracji prostej postać
H = [cosh -1]-1q f ;
2H
H = F(H ), tj. z F jako nieliniową funkcją H
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/19
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
ql
(*)
rozwiązanie przybliżone H = [cosh -1]-1q f , metoda iteracji prostej:
2H
ql
1. równaniu wyjściowemu(*) nadaje się charakterystyczną dla iteracji prostej postać
H = [cosh -1]-1q f ;
2H
H = F(H ), tj. z F jako nieliniową funkcją H
ql
i+1
i+1 i
;
H = [cosh -1]-1q f
2. wprowadza się do 1. formułę iteracyjną H = F(H ),
i
2H
gdzie i oznacza numer iteracji (i = 0,1,2,...)
zbieżność iteracji prostej ustala warunek Lipschitza, którego spełnienie ogólnie
0
mówiąc zależy od trafnie przyjętej wartości początkowej H
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/20
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
ql
(*)
rozwiązanie przybliżone H = [cosh -1]-1q f , metoda iteracji prostej:
2H
ql
1. równaniu wyjściowemu(*) nadaje się charakterystyczną dla iteracji prostej postać
H = [cosh -1]-1q f ;
2H
H = F(H ), tj. z F jako nieliniową funkcją H
ql
i+1
i+1 i
;
H = [cosh -1]-1q f
2. wprowadza się do 1. formułę iteracyjną H = F(H ),
i
2H
gdzie i oznacza numer iteracji (i = 0,1,2,...)
zbieżność iteracji prostej ustala warunek Lipschitza, którego spełnienie ogólnie
0
mówiąc zależy od trafnie przyjętej wartości początkowej H
i+1 i
H - H
3. określa się kryterium zbieżności procesu iteracyjnego np. w postaci,
d"  ;
i
 jest parametrem kontrolnym żądanej dokładności rozwiązania (np.  = 0.0001)
H
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/21
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
ql
(*)
rozwiązanie przybliżone H = [cosh -1]-1q f , metoda iteracji prostej:
2H
ql
1. równaniu wyjściowemu(*) nadaje się charakterystyczną dla iteracji prostej postać
H = [cosh -1]-1q f ;
2H
H = F(H ), tj. z F jako nieliniową funkcją H
ql
i+1
i+1 i
;
H = [cosh -1]-1q f
2. wprowadza się do 1. formułę iteracyjną H = F(H ),
i
2H
gdzie i oznacza numer iteracji (i = 0,1,2,...)
zbieżność iteracji prostej ustala warunek Lipschitza, którego spełnienie ogólnie
0
mówiąc zależy od trafnie przyjętej wartości początkowej H
i+1 i
H - H
3. określa się kryterium zbieżności procesu iteracyjnego np. w postaci,
d"  ;
i
 jest parametrem kontrolnym żądanej dokładności rozwiązania (np.  = 0.0001)
H
4. dobiera się wartość startową gwarantującą
ql2
0
zbieżność procesu iteracyjnego,
H = .
dobrą wartość startową jest przybliżenie
8 f
dla małej strzałki zwisu f << l .
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/22
Wytrzymałość Materiałów cięgna nierozciągliwe
Ciężar własny cięgna  linia zwisu (kształt)
ql
(*)
rozwiązanie przybliżone H = [cosh -1]-1q f , metoda iteracji prostej:
2H
ql
1. równaniu wyjściowemu(*) nadaje się charakterystyczną dla iteracji prostej postać
H = [cosh -1]-1q f ;
2H
H = F(H ), tj. z F jako nieliniową funkcją H
ql
i+1
i+1 i
;
H = [cosh -1]-1q f
2. wprowadza się do 1. formułę iteracyjną H = F(H ),
i
2H
gdzie i oznacza numer iteracji (i = 0,1,2,...)
zbieżność iteracji prostej ustala warunek Lipschitza, którego spełnienie ogólnie
0
mówiąc zależy od trafnie przyjętej wartości początkowej H
i+1 i
H - H
3. określa się kryterium zbieżności procesu iteracyjnego np. w postaci,
d"  ;
i
 jest parametrem kontrolnym żądanej dokładności rozwiązania (np.  = 0.0001)
H
4. dobiera się wartość startową gwarantującą
ql2
0
zbieżność procesu iteracyjnego,
H = .
dobrą wartość startową jest przybliżenie
8 f
dla małej strzałki zwisu f << l .
po wyznaczeniu z żądaną dokładnością składowej H oblicza się kolejno:
H
2 2
y , y , a stąd poszukiwaną siłę normalną w cięgnie N == H 1+ (y )2 ;
cos
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/23
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l , ciężar własny (q = const )
f << l  bardzo częsty przypadek występujący w praktyce
dy
2
z f << l ! y = <<1 ! ds E" dx ,
dx
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/24
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l , ciężar własny (q = const )
f << l  bardzo częsty przypadek występujący w praktyce
dy
2
z f << l ! y = <<1 ! ds E" dx , stąd
dx
q 1
2 2 2 2 2 2 2
linia zwisu H y =-q 1+ (y )2 ! H y = -q ! y =- =-
H ą
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/25
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l , ciężar własny (q = const )
f << l  bardzo częsty przypadek występujący w praktyce
dy
2
z f << l ! y = <<1 ! ds E" dx , stąd
dx
q 1
2 2 2 2 2 2 2
linia zwisu H y =-q 1+ (y )2 ! H y = -q ! y =- =-
H ą
1 x x2
2 2 2
całkowanie y =- daje: y = - + c1, y = - + c1x + c2,
ą ą 2ą
2
1) warunek brzegowy y |x = 0= 0 ! c2 = 0, 2) warunek symetrii y |x = l = 0 ! c1 = l / 2ą ,
1
2
qx ql2 4 f x
y = - (l - x), uwzględniając dane yx = l a" f ! H = ! y = (l - x);
1
2
2H 8 f l2
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/26
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l , ciężar własny (q = const )
f << l  bardzo częsty przypadek występujący w praktyce
dy
2
z f << l ! y = <<1 ! ds E" dx , stąd
dx
q 1
2 2 2 2 2 2 2
linia zwisu H y =-q 1+ (y )2 ! H y = -q ! y =- =-
H ą
1 x x2
2 2 2
całkowanie y =- daje: y = - + c1, y = - + c1x + c2,
ą ą 2ą
2
1) warunek brzegowy y |x = 0 = 0 ! c2 = 0, 2) warunek symetrii y |x = l = 0 ! c1 = l / 2ą ,
1
2
qx ql2 4 f x
y = - (l - x), uwzględniając dane yx = l a" f ! H = ! y = (l - x);
1
2
2H 8 f l2
l
2
całkowitą długość L = ds = 1+ (y )2dx po rozwinięciu w szereg potęgowy, mając na uwadze f << l ,
+"+"
L 0
ograniczamy się do dwóch pierwszych wyrazów, stąd
ll
4 f
11
2 2 2
L E" 1+ (y )2 dx = l + (y )2dx, po podstawieniu y = (l - 2x) i całkowaniu
()
22
+"+"
00
l2
2
#ś#;
8 f
L = l
ś#1+ ź#
3l2
# #
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/27
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l  dowolne obciążenie pionowe ( P a" Py ,q a" qy )
złożenia: 1) punkty przyłożenia obciążenia pionowego doznają jedynie przemieszczeń pionowych,
tj. ich przestrzenna linia działania obciążenia nie ulega zmianie,
2) brak obciążeń poziomych ! H (x) = const ;
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/28
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l  dowolne obciążenie pionowe ( P a" Py ,q a" qy )
złożenia: 1) punkty przyłożenia obciążenia pionowego doznają jedynie przemieszczeń pionowych,
tj. ich przestrzenna linia działania obciążenia nie ulega zmianie,
2) brak obciążeń poziomych ! H (x) = const ;
porównanie równana tak samo obciążonych układów:
d2M
a) momentów belki swobodnie podpartej = -q
dx2
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/29
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l  dowolne obciążenie pionowe ( P a" Py ,q a" qy )
złożenia: 1) punkty przyłożenia obciążenia pionowego doznają jedynie przemieszczeń pionowych,
tj. ich przestrzenna linia działania obciążenia nie ulega zmianie,
2) brak obciążeń poziomych ! H (x) = const ;
porównanie równana tak samo obciążonych układów:
d2M
a) momentów belki swobodnie podpartej = -q
dx2
d2 y
b) postać przybliżonej linii zwisu cięgna H =-q
dx2
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/30
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l  dowolne obciążenie pionowe ( P a" Py ,q a" qy )
złożenia: 1) punkty przyłożenia obciążenia pionowego doznają jedynie przemieszczeń pionowych,
tj. ich przestrzenna linia działania obciążenia nie ulega zmianie,
2) brak obciążeń poziomych ! H (x) = const ;
porównanie równana tak samo obciążonych układów:
d2M
a) momentów belki swobodnie podpartej = -q
dx2
d2 y
b) postać przybliżonej linii zwisu cięgna H =-q
dx2
pozwala wydedukować związek Hy = [M ], tj.
warunek zerowania się momentów
[M ] 1 d[M ] [T ]
2
i obliczyć linię zwisu jako y = , y == ;
H H dx H
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/31
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o małej strzałce zwisu f << l  dowolne obciążenie pionowe ( P a" Py ,q a" qy )
złożenia: 1) punkty przyłożenia obciążenia pionowego doznają jedynie przemieszczeń pionowych,
tj. ich przestrzenna linia działania obciążenia nie ulega zmianie,
2) brak obciążeń poziomych ! H (x) = const ;
porównanie równana tak samo obciążonych układów:
d2M
a) momentów belki swobodnie podpartej = -q
dx2
d2 y
b) postać przybliżonej linii zwisu cięgna H =-q
dx2
pozwala wydedukować związek Hy = [M ], tj.
warunek zerowania się momentów
[M ] 1 d[M ] [T ]
2
i obliczyć linię zwisu jako y = , y == ;
H H dx H
ll l
1 1
2
1
2
stąd: L = l + ( y )2dx = l + [T ]2dx ! H = [T ]2dx !
2
2
+"+" +"
00 0
2H 2(L - l)
H [T ]2
2
2
N == H 1+ (y )2 = H 1+ = H +[T ]2 , warto zauważyć, że ymax jest dla [T ] = 0,
2
cos H
gdzie [T ] jest funkcją (wykresem) sił tnących belki swobodnie podartej obciążonej jak cięgno.
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/32
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
3 układy współrzędnych przez punkt A:
1) podstawowy ( x, y),
2) obrócony ( x1, y1) o kąt  a" (x, x1) ,
dx
3) ukośny ( x1 y ), tu dx1 = ,
cos 
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/33
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
3 układy współrzędnych przez punkt A:
1) podstawowy ( x, y),
2) obrócony ( x1, y1) o kąt  a" (x, x1) ,
dx
3) ukośny ( x1 y ), tu dx1 = , stad:
cos 
y(x) = y(x) - x tg  geometria dowolnego punktu
w ( x, y ) (mierzona od prostej A, B)
y1 = y(x)cos   odpowiednia współrzędna punktu
cięgna w układzie ( x1, y1),
S  składowa reakcji z układu ( x1, y ) (kierunek AB || x1),
ponieważ tylko obciążenia pionowe ! SA = SB = S ,
H
ponadto S = ,
cos 
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/34
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
3 układy współrzędnych przez punkt A:
1) podstawowy ( x, y),
2) obrócony ( x1, y1) o kąt  a" (x, x1) ,
dx
3) ukośny ( x1 y ), tu dx1 = , stad:
cos 
y(x) = y(x) - x tg  geometria dowolnego punktu
w ( x, y ) (mierzona od prostej A, B)
y1 = y(x)cos   odpowiednia współrzędna punktu
cięgna w układzie ( x1, y1),
S  składowa reakcji z układu ( x1, y ) (kierunek AB || x1),
ponieważ tylko obciążenia pionowe ! SA = SB = S ,
H
ponadto S = ,
cos 
[RA] i [RB ]  składowe pionowe z ukośnego rozkładu reakcji ( x1, y )
są równe reakcjom [RA] i [RB ] swobodnie podpartej belki (ponieważ tylko obciążenia pionowe),
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/35
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
warunek zerowania się momentów:
[M (x)] - Sy1 = 0,
H
po uwzględnieniu y1 = y cos  , S = daje
cos 
linię zwisu w układzie ( x, y )
[M (x)]
y =
H
która jest identyczny jak dla cięgien o punktach zawieszenia
na tych samych wysokościach,
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/36
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
relację pomiędzy siłą H (S ),
a długością L cięgna,
długością cięgna L oblicza się
wykorzystując z zależności wyprowadzonej wcześniej,
jednak zapisanej w układzie obróconym ( x1, y1)
l
l 1
cos 
L =+ dy1 / dx1 2 dx1
()
+"
0
cos  2
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/37
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
relację pomiędzy siłą H (S ),
a długością L cięgna,
długością cięgna L oblicza się
wykorzystując z zależności wyprowadzonej wcześniej,
jednak zapisanej w układzie obróconym ( x1, y1)
l
l 1
cos 
L =+ dy1 / dx1 2 dx1
()
+"
0
cos  2
[M (x)] dy1 [T (x)] dx dy1 dy1 dx [T ] [T ]
ponieważ y1 = , = i dx1 = to == cos  = cos2 , stąd
S dxS cos  dx1 dx dx1 S H
l
l 1 cos3
całkowita długość cięgna L =+2 0[T ]2dx,
+"
cos  2 H
dla danej długości L (odpowiednio strzałki zwisu ymax a" f ) oblicza się siłę H (S ).
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/38
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
obliczona siła H (S ), pozwala z warunku równowagi
" Px = 0 ! -S cos  + N cos(ą + ) = 0 !
wyznaczyć
(dx1)2+ (dy1)2
cos  dx/dx1 ds
N = S = S = S = S
cos(ą +) dx/ds dx1 dx1
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/39
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
 mała strzałka zwisu f << l , obciążenie pionowe ( P a" Py ,q a" qy )
obliczona siła H (S ), pozwala z warunku równowagi
" Px = 0 ! -S cos  + N cos(ą + ) = 0 !
wyznaczyć
(dx1)2+ (dy1)2
cos  dx/dx1 ds
N = S = S = S = S
cos(ą +) dx/ds dx1 dx1
stąd
rozciągająca siła normalna w cięgnie
2
dy1
# ś# [T ]2 cos2
N = S 1+ = S 1+ = S2 +[T ]2 cos2 , N = S2 +[T ]2 cos2 .
ś# ź#
dx1
S2
# #
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/40
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
przykład, dane: l, , f , q  obciążenie równomierne (mała strzałka zwisu f << l ), obliczyć H i L;
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/41
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
przykład, dane: l, , f , q  obciążenie równomierne (mała strzałka zwisu f << l ), obliczyć H i L;
obliczamy kolejno:
[M (x)] ql2 ql2
y = ! yx = = a" f ! H = ,
l
2
H 8H 8 f
! cięgno ma kształt paraboli 2o,
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/42
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
przykład, dane: l, , f , q  obciążenie równomierne (mała strzałka zwisu f << l ), obliczyć H i L;
obliczamy kolejno:
[M (x)] ql2 ql2
y = ! yx = = a" f ! H = ,
l
2
H 8H 8 f
! cięgno ma kształt paraboli 2o,
1
[RA] = [RA] = ql ,
2
ll
11
[T (x)]2dx = [T (x)]i[T (x)]dx = 2 ( RA] i2 [ )
[
22
+"+"
00
l 3 RA]
h"
A"
11 1
= [RA]2l = [1 ql]2l = q2l3
33 2 12
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/43
Wytrzymałość Materiałów cięgna nierozciągliwe
Cięgna o punktach zawieszenia na różnych wysokościach A i B
przykład, dane: l, , f , q  obciążenie równomierne (mała strzałka zwisu f << l ), obliczyć H i L;
obliczamy kolejno:
[M (x)] ql2 ql2
y = ! yx = = a" f ! H = ,
l
2
H 8H 8 f
! cięgno ma kształt paraboli 2o,
1
[RA] = [RA] = ql ,
2
ll
11
[T (x)]2dx = [T (x)]i[T (x)]dx = 2 ( RA] i2 [ )
[
22
+"+"
00
l 3 RA]
h"
A"
11 1
= [RA]2l = [1 ql]2l = q2l3
33 2 12
l
l 1 cos3
L =+2 0[T ]2dx
+"
cos  2 H
2
l 1 cos3 l 8 f
1
=+ (12 q2l3) =+ cos3 .
2
cos  2 cos  3 l
# ś#
ql2
ś# ź#
8 f
# #
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów W18A/44
Wytrzymałość Materiałów Budownictwo, Rok II, Semestr III
Dziękuję za uwagę
cdn.
WILiŚ Politechnika Gdańska
Jacek Chróścielewski, Katedra Mechaniki Budowli i Mostów


Wyszukiwarka

Podobne podstrony:
Wytrzymalosc Materialow wyklad Ciegna 08 9
Wytrzymalosc Materialow wyklad Prety zespolone 07 8
Wytrzymalosc Materialow wyklad B Graficzne obliczanie?lek z iloczynu 2 funkcji 07 8
Wytrzymałość materiałów wykład 6
wytrzymałość materiałów wykład 2
Wytrzymalosc Materialow wyklad Laczniki 08 9
Wytrzymalosc Materialow wyklad Zakrzywione prety silnie 08 9
Wytrzymalosc Materialow wyklad?lki wielokrotne i zlozone 08 9
Wytrzymało¶ć materiałów Wykład 21
Wytrzymało¶ć materiałów Wykład 23
Wytrzymało¶ć materiałów Wykład 24
Wytrzymało¶ć materiałów Wykład 26
Wytrzymało¶ć materiałów Wykład 26
Wytrzymało¶ć materiałów Wykład 19 aneks
Wytrzymałość materiałów wykład 2
Wytrzymało¶ć materiałów Wykład 16
Wytrzymalosc Materialow wyklad Skrecanie swobodne 08 9

więcej podobnych podstron