Rozdział 4 biomedyka

  1. Na czym polega zależność miedzy rozwojem struktury i funkcji w ontogenezie.
    Środowisko wewnętrzne organizmu, mimo istnienia wokół niego zmiennych warunków oraz mimo, że jest w pewnym stopniu układem otwartym, ma swoiste mechanizmy integrujące i utrzymujące stan równowagi – homeostazy. Owe układy autonomiczne zmieniają się w procesie ontogenezy w miarę formowania się organizmu. Stąd też celowe jest omówienie w procesie ontogenezy specyfiki jego funkcji umożliwiających m.in. lokomocję, rozbudowę, przemianę, materii, energii, rozród, koordynacje funkcji czy reaktywność na czynniki zewnętrzne i tryb życia.
    2. Opisz przebieg procesu kostnienia kości długich.
    Proces kostnienia kości długich przebiega w następujący sposób:
    Najpierw w środkowej części trzonu kości następuje przerost i degeneracja chondrocytów (komórek chrzęstnych) i rozwój sieci naczyniowej. Za naczyniami krwionośnymi podążają osteoblasty (komórki kościotwórcze), tworząc pierwotne centra Punkty) kostnienia, które rozrastają się od środka trzonu w obydwu kierunkach modelu chrzęstnego. W późniejszym okresie podobna inwazja naczyń dotyczy nasad kostnych, gdzie powstają wtórne centra kostnienia. 
    W procesie tym nigdy nie następuje bezpośrednia przemiana tkanki chrzęstnej w kostną, lecz zawsze najpierw chrząstka zostaje zniszczona, a na tym miejscu dopiero wytworzona jest tkanka kostna. 
    Wtórne centra kostnienia występują na obydwu końcach kości długich – w nasadach. W większości kości pojawiają się one przed urodzeniem, jednak powstawanie nowych centów kostnienia trwa aż do okresu pokwitania. 
    Pomiędzy nasadą, a trzonem kości, które wykazują już zaawansowany proces kostnienia przez długi czas utrzymuje się chrzęstna płytka wzrostowa. Postępujący w niej rozplem (zwiększenie liczby) chondrocytów (komórek chrzęstnych) powoduje wzrastanie kości na długość. Kostnienie odbywa się wokół środkowej części modelu chrzęstnego, gdy ulegnie już ona uwapnieniu i stopniowej resorpcji (stopniowemu wchłonieniu). Dopiero zarośnięcie chrząstki nasadowej i spojenie nasady z trzonem stanowi zakończenie progresywnego rozwoju tkanki kostnej oraz uformowanie zasadniczego kształtu i wymiarów danej kości (zazwyczaj między 16 a 21 rokiem życia. Ukształtowanie się poszczególnych kości nie stanowi jednak zakończenia przebudowy tkanki kostnej, która trwa przez całe życie. 
    3. Na czym polega proces rzeszotnienia kości? 
    W procesie rzeszotnienia kości (osteoporozy fizjologicznej) zaznacza się stopniowy zanik istoty korowej, zmniejsza się masa i gęstość kości, beleczki kostne o mniejszym obciążeniu czynnościowym zanikają. Zmniejsza się czynność osteoblastów (komórek kościotwórczych). 
    Pomiędzy 35 a 50 rokiem życia u kobiet i mężczyzn ubywa średnio 8-10% kości gąbczastej i o 2-4% kości zbitej. Znaczne przyspieszenie ubytku tkanki kostnej następuje u kobiet w okresie 5-15 lat po menopauzie i jest przyczyną rozwoju osteoporozy pomenopauzalnej. W wyniku niedoboru żeńskich hormonów płciowych (estrogenów) ma miejsce znaczny wzrost metabolizmu w tkance kostnej, doprowadzający do ubytku nawet 4% masy kości gąbczastej w ciągu roku. W ciągu całego życia kobiety tracą 30-40% szczytowej masy kostnej, zaś mężczyźni 20-30%. Mężczyźni charakteryzują się również większą szczytową masą kości niż kobiety, dlatego osteoporoza występuje u nich dopiero po 70 roku życia (tzw. osteoporoza starcza).
    4.Scharakteryzuj czynniki odpowiedzialne za rozwój i przebudowę tkanki kostnej. 
    Czynniki odpowiedzialne za rozwój, przebudowę i uwapnienie tkanki kostnej to:
    -składniki pokarmowe – aby tkanka kostna prawidłowo się rozwijała konieczne jest odpowiednie spożycie białka, tłuszczu, witamin, a także składników mineralnych, z których najważniejsze to wapń, fosfor i magnez. Prawidłowa zawartość tych składników w pokarmie konieczna jest nie tylko w okresach intensywnego wzrostu, lecz także w okresie późniejszym, ze względu na stały proces przebudowy tkanki kostnej oraz na opóźnienie rzeszotności kości, -układ wewnątrzwydzielniczy, w którym podstawowe znaczenie ma hormon wzrostu – HGH, somatomedyny (hormony wzrostu), hormony produkowane przez tarczycę i przytarczyce, hormony płciowe (zwłaszcza w okresie dojrzewania) oraz kartykoidy produkowane przez nadnercza, 
    -aktywność ruchowa, która odgrywa istotną rolę w formowaniu się kształtu i wielkości kości. Optymalna dawka ruchu może wpływać na opóźnienie zarastania płytek wzrostowych kości długich, a tym samym umożliwia osiągnięcie większych wymiarów kości. Naprzemienne energiczne naciski na chrząstkę, jakie następują w wyniku ciążenia ziemskiego przy ruchach lokomocyjnych, dźwiganie ciężarów, konieczne są do prawidłowego wzrastania kości, Ucisk wpływa na procesy wzrastania za pośrednictwem ilości i zawartości krwi krążącej w nasadzie. Ucisk zbyt mały (poniżej 7g/mm²) i zbyt duży (powyżej 37g/mm²) hamuje wzrastanie. Różne formy ruchu i wysiłku fizycznego mogą w różny sposób wpływać na kształt i wielkość kości (np. odmienność pewnych cech budowy ciała ludności wsi i miast, także różnice między przedstawicielami niektórych dyscyplin sportowych). Przy niedostatecznej aktywności ruchowej obserwuje się odwapnienie i obniżenie zawartości białka w tkance kostnej. Brak ruchu opóźnia zrastanie się złamanych kości, a w starszym wieku przyspiesza proces osteoporozy. 
    5. Jakie znasz typy włókien mięśniowych?
    U człowieka można wyróżnić dwa zasadnicze typy włókien mięśniowych: 
    -włókna szybkokurczliwe, tzw. białe, charakteryzujące się mniejszą liczbą mitichondriów, słabszym ukrwieniem oraz zdolnością do szybkiego rozwijania siły maksymalnej. Równocześnie stosunkowo szybko ulegają zmęczeniu, ich liczba ma więc decydujące znaczenie w wykonywaniu ruchów szybkich o znacznej intensywności, a równocześnie krótkim czasie trwania:
    -włókna wolnokurczliwe, tzw. czerwone, charakteryzujące się większą liczbą mitichondriów i silniejszym ukrwieniem oraz zdolnością do długotrwałej pracy, przy wolniejszym rozwijaniu siły maksymalnej. Ich liczba odgrywa więc decydująca rolę w wysiłkach o mniejszej intensywności, ale dłuższym czasie trwania. 
    Większość mięśni zawiera obydwa typy włókien, jednak w różnej proporcji. 
    6. Opisz przebieg rozwoju układu mięśniowego w ontogenezie. 
    Rozwój mięśnia odbywa się głównie przez przyrost ilości włókien w okresie płodowym. Po urodzeniu zwiększa się w zasadzie już tylko ich wielkość. Między 32 tygodniem rozwoju płodowego a 4 miesiącem po urodzeniu następuje podwojenie liczby włókien, Według niektórych źródeł mnożenie się włókien ustaje przed 4 miesiącem po urodzeniu, według innych ich mnożenie się w ograniczonej liczbie jest możliwe nawet do połowy piątej dekady życia. 
    W ciągu pierwszego roku życia następuje bardzo intensywny rozwój masy mięśni i pogrubienie włókien. W 2-3 roku życia następuje przede wszystkim ich różnicowanie. Około 7 roku życia znaczny stopień zróżnicowania osiągają mięśnie ręki, zaś pozostałe po 12 roku życia. Poi 12 roku włókna mięśniowe nadal rozrastają się intensywnie i grubieją. W wyniku narastania masy miofibryli następuje zmniejszenie się liczby jąder na jednostkę powierzchni. Jądra z okrągłych przekształcają się w pałeczkowate, zmniejsza się ilość sarkoplazmy wewnątrzkomórkowej względem masy włókien kurczliwych. 
    W okresie skoku pokwitalnego występuje pewna dysproporcja między zwiększającą się masą i siła mięśni a ich dojrzałością. Względna stabilizacja osiągana jest dopiero około 18-20 roku życia. Z wiekiem zmienia się skład chemiczny mięśni, a także ich kształt, przebieg i miejsca przyczepu. Zmianie ulega proporcja między wielkością ścięgna a części kurczliwej mięśnia. W okresie starzenia się następują zmiany inwolucyjne mięśni. 
    7. Od czego zależy sprawna praca mięśni, koordynacja i precyzja ruchów? 
    Sprawna praca mięśni, koordynacja i precyzja ruchów zależą nie tylko od budowy samych mięśni, ale przede wszystkim od funkcji układu nerwowego, tj. od rozwoju analizatora ruchowego w korze mózgowej oraz od inerwacji, czyli unerwienia mięśni. Proces inerwacji polega na wrastaniu zakończeń nerwowych w głąb włókien mięśniowych i na rozgałęzieniu się rosnących zakończeń nerwowych i mielinizacji (powstawanie) części doprowadzającej przewodów nerwowych. 
    Duży wpływ na efektywność wykonywanej przez mięśnie pracy mają także pobudliwość i labilność.
    Pobudliwość mięśni (zdolność do reagowania
    skurczem na pobudzenie elektryczne). Miarą pobudliwości jest minimalna siła pobudzenia, konieczna do wywołania efektu skurczu. Im bardziej dany miesień jest pobudliwy, tym niższy jest próg pobudliwości, czyli mniejszy impuls potrzebny do wywołania jego skurczu.
    Labilność mięśni – określa szybkość reakcji mięśniowych (ilość cykli skurczów na jednostkę czasu), od których w znacznym stopniu zależy szybkość ruchów, wykonywanych w odpowiedzi na bodziec. Wskaźnikiem labilności jest największa liczba skurczów na sekundę, jaką mięsień może wykonać. 
    W rozwoju sprawności pracy mięśni istotnym elementem jest czucie mięśniowe, czyli propriocepcja. Proprioceptory należą do grupy receptorów odbierających sygnały z wnętrza ciała. Pozwalają one rejestrować ruchy kończyn, położenie ciała i jego części w przestrzeni oraz szybkość i siłę ruchów w stawach wykonywanych przez określone mięśnie. Na ogół przyjmuje si, że siła mięśni zależy od liczby włókien mięśniowych, od wielkości przekroju poprzecznego mięśnia, a także dojrzałości układu nerwowego i stopnia wytrenowania. 
    8. Omów budowę układu oddechowego człowieka. 
    Układ oddechowy składa się z dróg oddechowych górnych (jama nosowa, gardło), dolnych (krtań, tchawica, oskrzela) oraz płuc. Wdychane powietrze dostaje się przez nozdrza przednie do przedsionka nosa, a następnie do jamy nosowej. W jamie nosowej można wyróżnić okolicę węchowa wysłaną nabłonkiem węchowym oraz okolicę oddechową wysłaną nabłonkiem migawkowym. Z jamą nosową kontaktują się zatoki kości: klinowej, sitowej i czołowej. Poprzez nozdrza wewnętrzne (tylne) jama nosowa łączy się z gardłem, w którym ma miejsce krzyżowanie się dróg oddechowych z pokarmowym. Z gardła wdychane powietrze dostaje się do krtani. Stanowi ona fragment dróg oddechowych i jednocześnie jest narządem głosu. Szkielet krtani tworzy system chrząstek połączonych za pomocą mięśni i wiązadeł. Jedną z funkcji krtani jest ochrona dróg oddechowych przed wtargnięciem tam pokarmu z jamy gardła. Rolę tę spełnia głównie jedna z chrząstek krtani, zwana nagłośnią oraz mięśnie krtani. Jeżeli mechanizm ten zawiedzie i do krtani dostanie się, np. płyn lub kęs pokarmu, inicjowany jest odruch kaszlu, który ma na celu uwolnienie dróg oddechowych od drażniących go cząstek. W najważniejszej części krtani (w nagłośni) znajdują się fałdy głosowe (struny głosowe). Powietrze przechodzące przez zwężoną głośnię powoduje drgania fałdów głosowych i wydawanie dźwięków. Z krtani powietrze przechodzi do tchawicy. Jest to rurka o długości ok.12 cm u człowieka dorosłego, wzmocniona licznymi chrząstkami i wiązadłami, które utrzymują drożność tchawicy i uniemożliwiają zapadanie się jej ścian. W klatce piersiowej tchawica rozgałęzia się na dwa oskrzela główne, o budowie podobnej do tchawicy. Oskrzela główne rozgałęziają się w oskrzela płatowe, którymi powietrze dostaje się do poszczególnych płatów płuc. Płuco prawe składa się z trzech płatów – lewe z dwóch. Końcowe odgałęzienia oskrzeli (oskrzeliki oddechowe) tworzą uwypuklenia, zwane pęcherzykami płucnymi. Każdy pęcherzyk opleciony jest przez sieć krwionośnych naczyń włosowatych. 
    9. Jak zmieniają się z wiekiem funkcje układu oddechowego?
    Wraz z rozwojem funkcji oddechowych płuc zmienia się z wiekiem ukształtowanie klatki piersiowej. U noworodka jest ona cylindryczna, żebra ustawione prawie prostopadle do kręgosłupa. Słabość mięśni oddechowych utrudnia unoszenie żeber do góry, wobec czego w tym okresie rozwój typowy jest brzuszny (przeponowy) typ oddychania. Dopiero obniżanie się mostka , spłaszczanie klatki piersiowej z cylindrycznego na zbliżony do ściętego stożka oraz typ oddychania z brzusznego na piersiowy. 
    Z wiekiem znacznie zmieniają się funkcje układu oddechowego. Zmniejsza się liczba oddechów na minutę, wzrasta głębokość oddechów i objętość oddechowa, a w wyniku tego wzrasta minutowa wentylacja płuc. Wykazuje ona jednak znaczne zróżnicowanie związane z warunkami klimatycznymi i trybem życia. Z wiekiem zmienia się także powiązanie z układem krążenia, rośnie liczba uderzeń serca przypadająca na jeden oddech. 
    Inna jest w różnych grupach wieku zawartość tlenu w powietrzu pęcherzykowym – u dzieci do 1 roku życia – ok.17,7 %, u uczniów - ok. 15%, u dorosłych – ok.13,7%. Zawartość dwutlenku węgla zwiększa się – u dzieci do 1 roku życia wynosi 2,4%, u uczniów 13,7% i u dorosłych ok. 4%. Zróżnicowane jest także pobranie tlenu z 1 litra powietrza wdychanego.Noworodek np. pobiera 26 ml tlenu z wdychanego powietrza, młodzież w okresie pokwitania 35-36 ml, zaś człowiek dorosły ok. 70 ml. 
    Wraz z wiekiem zmieniają się nie tylko mechanizmy dostarczania tlenu, lecz także zapotrzebowanie. Zarówno wydatki, jak i straty energii u dziecka są duże, stąd też zapotrzebowanie na tlen jest większe. 
    W miarę starzenia się ustroju następuje zmniejszanie się elastyczności i podatności tkanki płucnej, wentylacja różnych części płuc staje się nie równomierna, przypuszczalnie następuje zmniejszenie przepływu krwi przez płuca, związane ze zmniejszeniem elastyczności naczyń krwionośnych płuc. Rezultatem tych zmian jest zmniejszenie maksymalnej i wysiłkowej wentylacji płuc. Z 1 litra powietrza przepływającego przez płuca pobierana jest mniejsza ilość tlenu, wentylacja płuc staje się więc mniej ekonomiczna. Mniejsza jest pojemność życiowa płuc, a większa pojemność powietrza zalegającego. 
    W zależności od potrzeb ustroju zmienia się np. częstość i głębokość oddechów. Zdolność dostosowania się do różnych warunków zachodzi przy udziale układu nerwowego oraz właściwości chemicznych krwi. Ośrodek oddechowy umiejscowiony w rdzeniu przedłużonym odbiera bodźce informujące o prężności tlenu i dwutlenku węgla w płynach i tkankach ustrojowych. W odpowiedzi na nie następuje pobudzenie mięśni szkieletowych, które kurcząc się wywołują wdech lub wydech. 
    Duże zmiany w poszczególnych funkcjach oddechowych płuc wywołuje zwiększona aktywność fizyczna. Po obciążeniu fizycznym wzrasta wentylacja płuc. 
    10. Omów funkcjonowanie małego i dużego obiegu krwi.
    Naczynia krwionośne tworzą w układzie dwa obiegi. 
    Krwioobieg mały rozpoczyna się wychodzącym z prawej komory pniem płucnym, który następnie dzieli się na tętnice płucne: prawa i lewą. W płucach każda z nich rozgałęzia się na coraz drobniejsze tętniczki, przechodzące w naczynia włosowate, w których następuje utlenowanie krwi. Utlenowana krew wraca żyłami płucnymi do lewego przedsionka serca. 
    Krwioobieg duży rozpoczyna się aortą (tętnica główna ) wychodzącą z lewej komory serca. Utlenowana krew przesyłana jest z aorty do drobniejszych tętnic i naczyń włosowatych całego ciała. Następnie żyłami, które łączą się w dwa większe naczynia: żyłę główną górną i dolną, krew dochodzi do prawego przedsionka serca. 
    11. Jak zmieniają się z wiekiem funkcje układu krwionośnego? 
    Tętnice z wiekiem stają się stosunkowo węższe niż u małego dziecka. Żyły powiększają się i w okresie dojrzałości ich objętość jest dwukrotnie większa niż objętość tętnic. Światło naczyń włosowatych u dzieci jest również stosunkowe szersze, dzięki czemu przepływa przez nie dwukrotnie więcej krwi niż u dorosłych. Ściany naczyń krwionośnych dziecka są bardziej elastyczne, co ułatwia krążenie krwi.
    W okresie starości następuje ograniczenie liczby czynnych naczyń włosowatych. W ściankach naczyń zaczynają odkładać się składniki mineralne i cholesterol, co zmniejsza ich elastyczność, powoduje to utrudnienie i zwolnienie przepływu krwi. 
    Po 40-50 roku życia następuje zahamowanie wzrastania ciśnienia rozkurczowego, a po 70-80 roku życia ciśnienie skurczowe stabilizuje się u mężczyzn, podczas gdy zazwyczaj obniża się u kobiet. 
    Z wiekiem zmienia się kształt krwinek. U płodu są one większe, niekiedy jądrzaste i zawierają hemoglobinę innego typu (tzw. płodową). Zmienia się również skład krwi: zwiększa się liczba erytrocytów i płytek krwi, a obniża się liczba leukocytów. 
    Tendencje rozwojowe tych właściwości krwi, które odgrywają zasadniczą rolę w transporcie tlenu są ściśle powiązane z rozwojem masy ciała i powierzchni aktywnej wymiany gazów w płucach.

12. Jakie zmiany zachodzą w układzie oddechowym i układzie krwionośnym pod wpływem systematycznej aktywności ruchowej. 
W układzie krążenia, podobnie jak w układzie oddechowym, z którym jest ściśle związany, zachodzą zmiany pod wpływem systematycznej aktywności ruchowej. Zwiększa się objętość wyrzutowa serca, a w wyniku tego wzrasta pojemność minutowa serca, wzrasta wykorzystanie tlenu z krwi przepływającej przez mięśnie. Pod wpływem treningu następuje przerost mięśnia sercowego, tzw. wzrasta jego masa i proporcja do masy ciała, jednak po przerwaniu treningu ulega zanikowi. 
13. Wymień znane Ci gruczoły wewnątrzwydzielnicze człowieka oraz produkowane przez nie hormony. 
Do gruczołów wewnątrzwydzielniczych należą: 
1. Szyszynka – wydziela melatoninę hamującą rozwój gruczołów płciowych. Intensywne wydzielanie melatoniny 5-7 roku życia hamuje wydzielanie FSH-RH i LH-RH, dzięki temu szyszynka kontroluje wydzielanie hormonów gonadotropowych i opóźnia dojrzewanie płciowe. Melatonina wpływa ponadto na ośrodki snu i czuwania, a także powoduje agregację ziaren barwnika melatoniny, prowadząc do rozjaśnienia skóry. 
2. Tarczyca – wydziela dwa hormony: tyroksynę (T4) i trójodotyroninę (T3). Podstawową ich funkcją jest nasilanie procesów przemiany materii w komórkach organizmu i produkcja ciepła. Stymulują one syntezę białek, wzrost i dojrzewanie różnych tkanek, a w szczególności ośrodkowego układu nerwowego. 
W tarczycy znajduje się również pewna ilość komórek C produkujących hormon kalcytoninę. Odgrywa ona ważna rolę w gospodarce wapniowej organizmu, tj. powoduje obniżanie poziomu wapnia we krwi na skutek zwiększonego odkładania tego składnika w kościach. Obniżenie się jej wydzielania w okresie starości sprzyja rozwojowi osteoporozy. 
3. Przytarczyce – występują jako 4 niewielkie gruczoły umieszczone na tylnej ściance tarczycy. Produkują parathormon, który podwyższa poziom wapnia we krwi, tj. pobudza czynności osteoklastów, zmniejsza wydalanie wapnia z moczem, aktywuje witaminę D, oddziałuje również na równowagę kwasowo-zasadową. 
4. Grasica – produkuje: tymizynę indukującą zróżnicowanie i dojrzewanie limfocytów T i tym samym wpływa na procesy immunologiczne, - tymostymulinę pobudzającą wytwarzanie interferonu oraz tymopoietynę, która hamuje przewodzenie impulsów nerwowych między komórkami nerwowymi i mięśniowymi, przez co oddziałuje na siłę skurczu mięśni szkieletowych. W okresie dojrzewania płciowego grasica ulega zanikowi, jednak funkcje immunologiczne dorosłego ustroju pozostają bez zmian. 
5. Trzustka spełnia nie tylko rolę gruczołu trawiennego. Zawiera również liczne skupienia tkanki, zwane wysepkami Langerhansa, w których występują komórki α, produkujące glukagon i komórki , produkujące insulinę. Obydwa te hormony działają wywołując przeciwstawne efekty. Glukagon powoduje podwyższenie poziomu cukru we krwi. Jegozadanie polega na ochronie organizmu przed skutkami spadku poziomu glukozy w okresie między posiłkami, w czasie głodzenia lub wysiłku fizycznego. Podstawowym efektem działania insuliny jest obniżanie poziomu glukozy we krwi. Ogólnie insulina pobudza anabolizm w komórkach różnych tkanek i narządów, stąd jej duże znaczenie w procesie wzrastania organizmu.
6. Nadnercza – składają się z dwóch części o różnym pochodzeniu i budowie. 
Kora nadnerczy zbudowana jest z trzech warstw:
-kłębowej, której hormony wpływają głównie na gospodarkę wodno-mineralną ustroju, zwiększają resorpcję sodu i wydalanie potasu. Powoduje to podwyższenie ciśnienia krwi;
- pasmowej, jej hormony chociaż przyspieszają syntezę glikogenu w wątrobie, powodują podwyższenie glukozy we krwi, gdyż jednocześnie zmniejszają zużycie glukozy i zwiększają szybkość przekształcania białek w węglowodany. Hormony te hamują także syntezę białek i obniżają liczbę leukocytów we krwi, przez co ograniczają m.in. odporność organizmu;
- siatkowej syntezującej hormony płciowe (androgeny). Wpływają one na przyspieszenie syntezę białek i wzrastanie organizmu. Odpowiadają za rozwój drugorzędnych cech płciowych męskich.
7.Rdzeń nadnerczy – wydziela dwa hormony: adrenalinę i noradrenalinę. Mobilizują one organizm do działania i przygotowują go do warunków stresowych. Ich działanie polega m.in. na przyspieszeniu częstości skurczów serca, podwyższeniu ciśnienia tętniczego krwi, rozszerzeniu naczyń krwionośnych w mięśniach szkieletowych, zwiększeniu wentylacji płuc, podwyższeniu poziomu glukozy we krwi i rozkładzie tłuszczów w tkance tłuszczowej, rozszerzeniu źrenic i poprawie przytomności umysłu. 
8. Gruczoły płciowe obok produkcji gamet spełniają ważną rolę jako gruczoły wewnątrzwydzielnicze. Produkowane przez nie hormony płciowe dzielimy ze względu na ich budowę i działanie na : androgeny, estrogeny i progestyny. Głównym androgenem męskim jest testosteron produkowany przez komórki Leydiga w jądrach. Pobudzają one zarówno podziały komórek, jak i wzrastanie i dojrzewanie tkanek. W trakcie rozwoju zarodkowego i płodowego osobników płci męskiej androgeny kształtują ośrodek rozrodczy w podwzgórzu w kierunku męskim. Pobudzają rozwój dodatkowych narządów płciowych w trakcie życia płodowego i kształtowanie zewnętrznych narządów płciowych w trakcji, tj. przewodów i gruczołów wydzielniczych, które przenoszą plemniki i produkują płyn nasienny. W okresie dojrzewania powodują wzrost prącia i moszny, gruczołu krokowego i pęcherzyków nasiennych, rozwój owłosienia łonowego i rozrost gruczołów łojowych oraz rozrost mięśni, kośćca i krtani. W wieku dojrzewania androgeny odpowiadają za prawidłowy przebieg spermatogenezy i popęd płciowy, za typowe dla płci męskiej owłosienie klatki piersiowej i twarzy, a także stopniowe zanikanie włosów na głowie. Największa produkcja androgenów występuje u mężczyzn w wieku ok.20 lat, później stopniowo spada. Spadek ten jest najszybszy między 40-50 rokiem życia, co prowadzi do objawów, zwanych przekwitaniem męskim (andropauzą). 
Głównym estrogenem produkowanym przez jajniki jest estradiol, a także estron. Estrogeny, podobnie jak androgeny wykazują istotnie działanie anaboliczne są odpowiedzialne za wzrost i rozwój jajowodów, macicy, pochwy oraz zewnętrznych narządów płciowych. Wpływają na zwiększenie ilości białek kurczliwych (aktyny i miozyny) w mięśniówce macicy, dzięki czemu powodują wzrost jej samoistnej kurczliwości oraz pobudzają regenerację warstwy czynnościowej śluzówki macicy podczas cyklu miesięcznego. Współdziałają w rozwój gruczołów sutkowych, przyspieszą dojrzewanie kośćca i odpowiadają za ukształtowanie miednicy u kobiet. Około 50 roku życia następuje zakończenie wydzielania estrogenów przez jajniki i ustanie miesiączkowania (menopauzy).
Progesteron odpowiada za przygotowanie macicy do przyjęcia (inplantacji) zapłodnionej komórki jajowej i za kontrolę przebiegu ciąży.
14. Na czym polega nadrzędna rola podwzgórza i przysadki mózgowej w funkcjonowaniu układu endokrynalnego?
Podwzgórze pełni nadrzędną rolę w układzie endokrynalnym. Jest ono częścią układu nerwowego, wchodzi w skład międzymózgowia. Tworzy je pas szarej substancji wokół przysadki mózgowej. Komórki podwzgórza mają właściwości i komórek nerwowych (przewodzenie bodźców elektrycznych), i wydzielniczych (produkcja hormonów). Podwzgórze jest ściśle powiązane z tylnym płatem przysadki mózgowej, który również jest częścią układu nerwowego. Niektóre komórki podwzgórza mają aksony umieszczone w tylnym płacie przysadki. Produkowane przez podwzgórze hormony: wazopresyna i oksytocyna spływają wzdłuż aksonów do tylnego płata przysadki, gdzie są gromadzone i w razie potrzeby uwalniane. Oksytocyna powoduje skurcze mięśni gładkich macicy w czasie porodu, w końcowej fazie aktu płciowego ułatwia transport plemników w stronę jajowodów. Powoduje także odkurczanie elementów kurczliwych gruczołów mlecznych u karmiących matek, dzięki czemu mleko spływa do przewodów mlecznych. Na uwalnianie oksytocyny duży wpływ maja czynniki natury psychologicznej. Wazopresyna (ADH, hormon antydiuretyczny), zwiększa wchłanianie wody w kanalikach nerkowych. Powoduje więc zatrzymanie wody w organizmie i zwiększa objętość krwi i płynów tkankowych; powoduje także skurcz mięśni naczyń krwionośnych, przez co podwyższa ciśnienie krwi.
Podwzgórze produkuje także hormony wpływające na wydzielanie lub hamowanie wydzielania hormonów przedniego płata przysadki mózgowej. Określane są one odpowiednio jako liberyny (RH) i statyny (IH); przykładem mogą być somatoliberyna (SRH), pobudzająca uwalnianie hormonu wzrostu (somatotropiny) i somatostatyna (SIH) – hamująca jego uwalnianie. 
Przedni płat przysadki mózgowej wydziela hormony tropowe, wpływające na rozwój i czynności niektórych gruczołów obwodowych oraz hormony działające bezpośrednio na tkanki. Wzajemne zależności pomiędzy przysadkową a gruczołami podległymi, wydzielającymi hormony docelowe określa się jako sprzężenia zwrotne. Związek przysadki mózgowej z dowolnym gruczołem podległym określa się jako sprzężenie zwrotne dodatnie, gdyż przysadka mózgowa wydziela hormon tropowy pobudzający do wydzielania gruczoł podległy, zaś związek gruczołu podległego z przysadka jako sprzężenie ujemne ponieważ hormony pochodzące z gruczołu podległego działają hamująco na wydzielanie przez przysadkę konkretnego hormonu tropowego. Hormony tropowe przedniego płata przysadki mogą także drogą sprzężenia zwrotnego wywierać wpływ na syntezę i uwalnianie podwzgórzowych hormonów pobudzających oraz hamujących. 
Oprócz współzależności gruczołów dokrewnych opartej o mechanizm sprzężenia zwrotnego, w którym funkcjonują podwzgórze i przysadka mózgowa, działanie układu endokrynalnego polega także na współdziałaniu dwóch różnych hormonów w kontrolowaniu niektórych czynności fizjologicznych. Współdziałanie to polega na istnieniu par hormonów w przeciwstawnym działaniu, wywołujących odwrotne względem siebie odgłosy. Do hormonów tropowych, produkowanych przez przedni płat przysadki mózgowej należą: 
-hormon adrenokortykotropowy (ACTH, kortykotropina), wpływająca na cześć korową nadnercza, 
-hormon tyreotropowy (TSH, tyretropina), działający na tarczycę, 
-hormony gonadotropowe: folikulostymulina (FSH, filotropina) i hormon luteinizujący (LH, lutropina), których ogólne działanie polega na stymulacji rozwoju gonad i rozpoczynaniu dojrzewania płciowego. FSH u kobiet pobudza wzrost i dojrzewania pęcherzyka jajnikowego oraz wydzielanie estrogenów, a u mężczyzn pobudza spermatogenezę. LH wywołuje u kobiet owulację, odpowiada za powstawianie ciałka żółtego oraz wydzielanie progesteronu i estrogenów; u mężczyzn pobudza jądra do produkcji androgenów. 
Hormony działające bezpośrednio na tkanki to: 
-prolaktyna (LTH, hormon laktotropowy), wpływa na rozwój gruczołów sutkowych u kobiet, zapoczątkowuje i podtrzymuje laktację, kontroluje „instynkt macierzyński”,
-hormon wzrostu (HGH, STH), ogólnie kontroluje wzrost tkanek, stymuluje podziały mitotyczne komórek. Wywiera wpływ anaboliczny na mięśnie szkieletowe i mięsień sercowy, gdzie pobudza syntezę białek, DNA i RNA, wywiera wpływ kataboliczny na tkankę tłuszczową, podwyższ poziom glukozy we krwi, przyczynia się do zatrzymywania w nerkach jonów wapnia potrzebnych do wzrostu ości. 
Część pośrednia przysadki produkuje hormony melanotropowe (MSH), powodujące zmiany rozmieszczenia w skórze barwnika melaniny i pobudza komórki barwnikowe skóry do syntezy melaniny; wzmaga także uwalnianie wolnych kwasów tłuszczowych z tkanki tłuszczowej. 
15. Na czym polega hormonalne sterowanie rozwojem?
Hormonalne sterowanie rozwojem polega na tym iż w pierwszym trymestrze wzrastanie płodu jest regulowane układem hormonalnym. Przebiega ono w zależności od potencjału genetycznego. Czynniki hormonalne zaczynają odgrywać większą rolę w dalszym rozwoju płodu, wpływając na spożytkowanie substratów odżywczych, dostarczanych z krwiobiegu matki. W późniejszym rozwoju płodu zasadniczą rolę odgrywa łożysko, które jest główną drogą wymiany metabolicznej między płodem a matką. Stanowi ono również ważny gruczoł dokrewny, a jego czynność hormonalna rozpatruje się najczęściej łącznie z układem endokrynalnym płodu jako tzw. jednostkę płodowo-łożyskową. Pierwszym hormonem wytwarzanym przez łożysko jest gonadotropina łożyskowa (hCG), która odpowiada za utrzymanie ciąży poprzez wpływ na przetrwanie ciała żółtego i hamowanie procesów immunologicznych odrzucania płodu. Wpływa również na rozwój i czynność komórek Leydiga w jądrach płodu, zabezpieczając różnicowanie się narządów płciowych w kierunku męskim. Działa także [pobudzająco na tarczycę płodową i korę nadnerczy. Kolejnym ważnym hormonem produkowanym przez łożysko jest prolaktyna łożyskowa (hPL). Stymuluje ona wytwarzanie czynników wzrostowych, szczególnie somatomedyn.
16. Scharakteryzuj działanie hormonów płciowych w okresie pokwitania.
Męskie hormony płciowe (androgeny) pobudzają zarówno podział komórek, jak i wzrost oraz dojrzewanie tkanek. W okresie pokwitania wywołują tzw. „skok pokwitaniowy”- powodują rozrost kośćca, wzrost ciała na długość, rozrost obręczy barkowej, a także rozrost tkanki mięśniowej. W końcowej fazie dojrzewania przyśpieszają proces zarastania nasad kości długich. Żeńskie hormony płciowe (estrogeny), podobnie jak androgeny, powodują w okresie pokwitania wzrost aktywności osteoblastycznej, czego wynikiem jest skok pokwitaniowy w okresie dojrzewania. Estrogeny przyspieszają dojrzewanie kości i ułatwiają zarastanie nasad kości długich z trzonami bardziej skutecznie niż androgeny, skutkiem tego kościec kobiet jest zwykle krótszy niż mężczyzn.
U dziewcząt po wystąpieniu menarche stężenie hormonów płciowych i gonadotroin zmienia się cyklicznie. U kobiet po klimakterium następuje obniżenie syntezy estrogenów, co powoduje zaburzenia równowagi między estrogenami a androgenami w ich organizmach. Również u mężczyzn w starszym wieku zmienia się proporcja miedzy wydzielanymi androgenami i estrogenami. Na skutek dominacji estrogenów spotyka się u nich przerost prostaty i ginekomastię starczą.


Wyszukiwarka

Podobne podstrony:
Rozdział 6 biomedyka
Rozdział 5 biomedyka
Rozdział 2 biomedyka
Rozdział biomedyki
Rozdział biomedyka
Rozdział biomedyka
Rozdział 1 biomedyka
Rozdział 3 biomedyki
Rozdział 7 biomedyka
Rozdział 8 biomedyka
Rozdział biomedyka
Rozdział 9 biomedyka
Rozdział 6 biomedyka
Rozdział 5 biomedyka
Podstawy zarządzania wykład rozdział 05
2 Realizacja pracy licencjackiej rozdziałmetodologiczny (1)id 19659 ppt
Ekonomia rozdzial III
rozdzielczosc
kurs html rozdział II

więcej podobnych podstron