=
=
=a
=
=
()=
=
X=1 =
=
=
=
=
y=(3x2+5x-2)(3x-1)
y`=(3x2+5x-2)`(3x-1)+
+(3x2+5x-2)(3x-1)`=
=(6x+5-2) 3=18x2+15x-6x-5+
+9x2+15x-6=27x2+24x-11
y=$\frac{\mathbf{\text{lnx}}}{\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}}}$
$$\frac{\left( \mathbf{\text{lnx}} \right)^{\mathbf{'}}\left( \sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}} \right)\mathbf{-}\left( \mathbf{\text{lnx}} \right)\left( \sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}} \right)^{\mathbf{'}}}{\mathbf{(}\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}}\mathbf{)}{}^{\mathbf{2}}}$$
$$\frac{\begin{matrix}
\frac{\mathbf{1}}{\mathbf{x}}\mathbf{\ }\left( \sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}} \right)\mathbf{- lnx*}\mathbf{\ }\frac{\mathbf{1}}{\mathbf{2}\left( \sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}} \right)\mathbf{\ }}\mathbf{*} \\
\mathbf{*}\mathbf{(}\mathbf{x}^{\mathbf{2}}\mathbf{+ 1)}{}^{\mathbf{2}} \\
\end{matrix}}{\mathbf{(}\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}}\mathbf{)}{}^{\mathbf{2}}}$$
$$\frac{\begin{matrix}
\frac{\mathbf{1}}{\mathbf{x}}\mathbf{\ }\left( \sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}} \right)\mathbf{- lnx*}\mathbf{\ }\frac{\mathbf{1}}{\mathbf{2}\left( \sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}} \right)\mathbf{\ }}\mathbf{*} \\
\mathbf{*2}\mathbf{x} \\
\end{matrix}}{\mathbf{(}\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}}\mathbf{)}{}^{\mathbf{2}}}$$
$$\frac{\frac{\sqrt{x^{2} + 1}}{x} - \ \frac{\text{xlnx}}{\sqrt{x^{2} + 1}}}{(x^{2} + 1)}$$
f(x)=x’*e-x y’=x’*e-x+x*(e-x)’
y’= 1*e-x+x*e-x y’=e-x(1-x)
f”=(0) f(x)=$\frac{\mathbf{x}}{\mathbf{x - 1}}$
f’=$\frac{x^{'}\left( x - 1 \right) - x*\left( x - 1 \right)^{'} -}{\left( x - 1 \right)2}\frac{x - 1 - x\ }{\left( x - 1 \right)2}$
=$\ \frac{- 1}{\left( x - 1 \right)2}$
f’=$\frac{1^{'}\left( x - 1 \right){}^{2} - ( - 1)*(x - 1){}^{2}}{\left( x - 1 \right)2}\ $=
$$\frac{1(x^{2} - 2x + 1)}{((x - 1){}^{2){}^{2}}}$$
$\frac{\mathbf{2x - 2}}{\mathbf{(x - 1)}{}^{\mathbf{4}}}$ =$\frac{\mathbf{2*( - 2)}}{\mathbf{1}}$ = $\frac{\mathbf{- 2}}{\mathbf{1}}$ = -2
f”(x)=$\frac{\mathbf{2x}}{\mathbf{(1 +}\mathbf{x}^{\mathbf{2}}\mathbf{)}}$ wzór
f”=$\frac{\mathbf{2}\left( \mathbf{1 +}\mathbf{x}^{\mathbf{2}} \right)\mathbf{- 2x*2x}}{\left( \mathbf{1 +}\mathbf{x}^{\mathbf{2}} \right)\mathbf{2}}$ =
$\frac{\mathbf{2 + 2}\mathbf{x}^{\mathbf{2}}\mathbf{- 4}\mathbf{x}^{\mathbf{2}}}{\left( \mathbf{1 +}\mathbf{x}^{\mathbf{2}} \right)\mathbf{2}}$ =$\frac{\mathbf{2 - 2}\mathbf{x}^{\mathbf{2}}}{\left( \mathbf{1 +}\mathbf{x}^{\mathbf{2}} \right)\mathbf{2}}$
=$\frac{\mathbf{2(1 -}\mathbf{x}^{\mathbf{2}}\mathbf{)}}{\left( \mathbf{1 +}\mathbf{x}^{\mathbf{2}} \right)\mathbf{2}}$
f ”(2)=$\frac{\mathbf{2}\mathbf{(}\mathbf{1}\mathbf{-}\mathbf{2}{}^{\mathbf{2}\mathbf{)}}}{\left( \mathbf{1}\mathbf{+}\mathbf{2}^{\mathbf{2}} \right)\mathbf{2}}$ =$\frac{\mathbf{2}\mathbf{(}\mathbf{1}\mathbf{-}\mathbf{4}\mathbf{)}}{\left( \mathbf{1}\mathbf{+}\mathbf{4} \right)\mathbf{2}}$= $\frac{\mathbf{-}\mathbf{6}}{\mathbf{25}}$
y=$\frac{\mathbf{1 + sinx}}{\mathbf{1 - sinx}}$ y’=do wzoru
y’= $\frac{\mathbf{\text{cosx}}\left( \mathbf{1 - sinx} \right)\mathbf{-}\left( \mathbf{1 + sinx} \right)\mathbf{( - cosx)}}{\left( \mathbf{1 - sinx} \right)\mathbf{2}}$
y’= $\frac{\mathbf{2cosx}}{\left( \mathbf{1 - sinx} \right)\mathbf{2}}$
y= $\frac{\mathbf{2}\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{3x}\mathbf{+}\mathbf{1}}{\mathbf{5x}\mathbf{-}\mathbf{4}}$ y’=wzór
y’= $\frac{\left( \mathbf{4x - 3} \right)\left( \mathbf{5x - 4} \right)\mathbf{-}\left( \mathbf{2}\mathbf{x}^{\mathbf{2}}\mathbf{- 3x + 1} \right)\mathbf{*5}}{\left( \mathbf{5x - 4} \right)\mathbf{2}}$
y’=$\frac{\mathbf{10}\mathbf{x}^{\mathbf{2}}\mathbf{- 16x + 7}}{\left( \mathbf{5x - 4} \right)\mathbf{2}}$
y=$\frac{\mathbf{1}}{\mathbf{\text{lnx}}}$ y’=wzór y’=$\frac{\mathbf{1*}\frac{\mathbf{1}}{\mathbf{x}}}{\left( \mathbf{\text{lnx}} \right)\mathbf{2}}$= $\frac{\frac{\mathbf{1}}{\mathbf{x}}}{\left( \mathbf{\text{lnx}} \right)\mathbf{2}}$
(tgx)’=$\frac{\mathbf{1}}{\cos{{}^{\mathbf{2}}\mathbf{\ }}\mathbf{x}}$ y=$\mathbf{x}^{\mathbf{2}}\mathbf{tgx +}\frac{\mathbf{1}}{\mathbf{\text{cosx}}}$
y’=x2′*tgx+x2* tgx’+
+$\mathbf{\ }\frac{\mathbf{1}^{\mathbf{'}}\left( \mathbf{\text{cosx}} \right)\mathbf{- 1(cosx)'}}{\mathbf{\cos}\mathbf{x}^{\mathbf{2}}}$=
=2x*tgx+$\mathbf{x}^{\mathbf{2}}\mathbf{*}\frac{\mathbf{1}}{\mathbf{\cos}\mathbf{x}^{\mathbf{2}}}$+
$\mathbf{+}\frac{\mathbf{1}\left( \mathbf{- sinx} \right)}{\mathbf{\cos}\mathbf{x}^{\mathbf{2}}}$ =2tg$\mathbf{x}^{\mathbf{2}}\mathbf{+}\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{\cos}{}^{\mathbf{2x}}}\mathbf{\ }$
+$\frac{\mathbf{\text{sinx}}}{\mathbf{(cosx)2}}$ =2sinx*cosx=
=sin2x=2xsinx
ln=$\frac{\mathbf{2 -}\mathbf{x}^{\mathbf{3}}}{\mathbf{2}\mathbf{x}^{\mathbf{3\ + \ x + 3}}}$ y’=wzór
y=$\frac{1 + \sqrt[3]{x}}{1 - \sqrt[3]{x}}$ y’=wzór
$4^{x + \sqrt{x^{2} + 1}}$- 5*$2^{x + \sqrt{x^{2} + 1}}$