442 Rozwiązania i odpowiedzi
6.152. z' = l>V.
, 4x2 + l ,
6.154. x>0, z — —-— ex.
4 xjx
6.153. z = e2x(30x 2+20x—3). 6.155. /=(l+fc2)e“,rcsin* .
6.156. y' = 5x ln 5 +2* ln 2 6.158. y' = 2 • 7X ln 7.
6.157. y' = 3xx2(xln 3+3). 6.159. >' = 15 • 103x In 10.
6.160. a>0, y' = a2x x"'l(2x ln a +n). 6.161. x#0, y' = —.
-1
6.163. x?4 — 3, z’ —-- .
x+3
6.165. s' =
7t2+r
6.168. (>|2|, >' =
-2
Vr2-4
i
6.167. t#± 1, s' = --2 •
1 -r
1
6.169. x^0, x^l, y =——j—..
x ln |x|
, lab
6.170. a cos2 x^b sin2 x, >' = -=-j-.2 • z •
a cos x—b sin x
1 6.172. >'=- tg ±x.
6.171. cos x^0, >' = 6.173. cos x 5^0, >' =
cos x 1
cos X
6.174. >'= 8 ctg 5x cos x .
6.175. X540, X54l, >' = --—j=
(1 x) yjx
6.176. >'= 2 - - Wskazówka. Usunąć niewymierność z mianownika.
Vx2+1
6.177. >' = ctg x.
6.178. x>0, x?il, >'=--—= .
(l-x) Vx
1 —ln(lnx) 1—>lnx 6.180. >'= ,, ~-2-= n~g •
x (ln x) x (ln x)
6.179. :•
x(a+x)
ln a
6.181. >' = -
x (ln x)2
6.182. x>0, >' = 5x!x(lnx +1).
6.183. x>0, >' = — 30x~ 3x (ln x+!)•
Do rozdziału VI
443
6.184. x^0, y' = x*in x^—— +cos xln x^j . 6.185. y' = 3xCM sjn x ln ,
6.186. -^>0, y' = (^j ^ln 7-1)- 6187. x>0’ / = ^*"2(l-lnx).
6.188. a>0, y'=x'na-l\na.
Wskazówka. a=e'aa, a,n*=(elnx),n*=(7°*).
6.189. y' = 5,o2ln 5x)nS-1 .
6.190. / = 0. Uwaga. Pochodna y' = 0, ponieważ y=xl,,a x=(e,n x)I/ln x=e.
(cos2 x \
—r--sin xln sin x ).
sin x J
6.192. x>0, y'=(arctg x)x ( ln arctg x +
)
(1 +x2) arctg x)
--l-cos x ln tg xY
cos x /
i- / 1 sin x \
'* -j—1--ź— ln tgx).
\sin x cos"1 x cos x /
6.193. tgx>0, y'=(tgx)sinx(-+cosxln
6.194. tgx>0, y' = (tgx)c
: cos x cos
6.195. cosx>0, sinx^0, y'= —(cos x)clt x|° C°S * + l^ •
\ sin x )
6.196. y' = ex+'*.
6.197. Jeżeli x>0, to x=elnx, y = x*'=(elnx)**=e" ,nx,
y' = e'x ,nx (f In x + e" i «•* 1 ex ^ln x+Y j = ex+" ln x ^ln x + ^ .
albo inaczej:
lny = exlnx, (lny)’ = — = ex ^lnx + —y^ye^ln x +Y^ = e"ex^ln X +—
6.198. Jeżeli x>0, to x=elnx, xx = exlnx, y = xx',=e'*ln*,n\
albo inaczej:
(ex ,n xln x)' = X*' (exX(x ln x)' ln x + e"ln * =
=xxVx ^(ln x)2 + ln x+i-^=x*+x-'^(ln x)2 + ln x+^ ,
y =e
ex ln X ln jc/- X Ii
Iny=xxlnx, (lny)'=—=(xx)'Inx+x* —,