86 Układy równań z wieloma niewiadomymi (cd.)
86 Układy równań z wieloma niewiadomymi (cd.)
—Xj + 2x2 = O ,4xj + x2 = 4’
c)
X[ + x2 + x3 - 6 d) <jx, -x2 + x3 = 2, x, - x2 - x3 = O
e)
2x, + 2x2 - x3 + x4 = 4 4x,+3x2 -x3+2x4 = 6 8x, + 5x2 - 3x3 + 4x4 = 12
f)
3xj +3x2
2x3 + 2x4 = 6
x2 + x3 + x4 =1 x, + x3 + x4 = 2 x, + x2 + x4 = -1 x, + x2 + x3 = O
10.2 Dla jakiej wartości parametru aeR poniższy układ jest układem Crameu Rozwiąż go metodą wzorów Cramera:
x, + x2 + ax3 = 4a 2x, + 3x2 + 2x3 = 8a + 2 .
3x, + 4x2 + 2x3 = 1 la + 2 10.3 Rozwiąż poniższy układ Cramera dwoma sposobami:
2Xj + x2 + x3 = 2 ^ x, - x2 — 2x3 = 2.
x,
2x2 - 4x3 = 3
10.4 Rozwiąż układy metodą eliminacji Gaussa:
2x
i z J
a) <! x, -x
- x2 + x3 - 2x4 = 3
x3 =-l
b) < x, + 2x9 - x3 + x4 = 1 ,
3x, + x2 - x3 = 7
2x, + 2x2
6x4 = 8
d)
c) <
Xj + x2 + x3 = 0 -x, - x2 + 2x3 = 3 x1 -2x2 - x3 = -2 ’ 3xj - x2 + 2x3 = -1
4xj - x2 + x3 + x4 = -1 8xj - 2x2 + 2x3 + 2x4 = -2
e) i
“x. |
X2 |
+ 2x3 = | |||||
3xj |
i to X to |
- 4x3 + x4 |
= -l |
2x, |
+ 3x2 |
3x3 = | |
< xi |
-2x2 |
- x3 + x4 |
- o , |
f) ^ |
x, |
+ 2x2 |
“X3 = |
xi |
+ 2x2 - |
-2x3 - x4 |
= 2 |
X2 |
+ x3 = | ||
3x, |
4x2 |
+ 5x, |
Xj + 2x2 + 3x3+...
+ nx„ = n +1
12x, +3x2 + 4x3+...+(n + l)xn = n+2’
2x, + 4x-
2x, + x2 -x3 = 1 x, + 2x3 = 2 3Xj + x2 + x3 =3
i)
3x. + 7x-
6x3 + 8x4 =
+ 4x4 =14 ,
-x, - x2 + 12x3 - 12x4 = -2
k)
x, + x2 + x3 = O -Xj + 2x2 - x3 = 2 , x, + 4x2 + x3 = 2
— 2x, +3x2 —x3 = O x, + 2x2 + x3 - 2,
Xj -5x:
= 3
2x,
x2 +3x3
3Xj + x2
4x, -x2
- 5x3 = O + x3 = 3
x, + 2x2 — x4 = 1
2x,
x2 +x3 +2x4 - -1
x, + 3x2 - 13x3 - -6
- x, + 3x2 - x3 -3x4 = 2 3x, + x2 + x3 + x4 = O
Ko/wiąż układy równań z parametrem:
H)
O
ax, + x2 + x3 = 1 x, + ax2 + x3 = a
x, + x2 + ax3
x, - x2 + x3 = O x, +3x2 -3x3 = 2 , x, - 5x2 + 5x3 = k
b)
X, - x^
X, + X,
x2 + ax3 - x4 = -a x, + x3 + 2x4 = 0 2x, + ax3 + 2x4 = -2
ax, + 2x, - x3 = a
2ax, + x
a
2 3
— 3x, + x3 = -a
+ ax2 + 2x3 = a
*•)
[(a- i)x,
2x, + (2a - 3)x2 + 2x3 = a + 3 ’
( 4a + l)xj +(a-l)x2 + (a + l)x3 + x4 = 2a
-ax, + ax2 + (a + 2)x3 + x4 = 2a + 2 . , - x2 + x3 + x4 = 0
X