35

35



() > A.S. Jagiełło, Systemy elektromechaniczne dla elektryków

Przekształcenie napięć zostanie dokonane za pomocą identycznej macierzy, zatem dla obwodów elektrycznie połączonych wirników:

() > A.S. Jagiełło, Systemy elektromechaniczne dla elektryków

dP


Iły

wp~dt~

dr

wp' dt


2LWI


+ LnlpJtK[~^P 2)+2^^ = °


2Lwp M +Lmp ^(llbp 1 IlJsp2)+ 2R'wp I'Uvp 0


analogicznie dla obwodów stojana pierwszego silnika pomocniczego:

+4,,1=^,1


4 dI'Upl +£,

* dt

dt

dI,Up' +4,„

Śl\uL_

' dt mP

dt

p Y^sp1 Ibp 1 ' ^mp


ksp1 ttspl ~ U Ibpl


(8.4a)

(8.4b)

(8.4c)


oraz drugiego silnika pomocniczego:

=uhp2 (8.4e)

4/r Lmp— jpp&2 i^sphlspl -4jp4/-)+ 4p4y>2~^lbp2 (8-4f)

Natomiast wyrażenia opisujące moment elektromagnetyczny przyjmą postać:

K\pl = i j^nip (Alrl I\r~Ib\ I\lr )    (8.5a)

Tt\pl - ~2 j^mp (Als2 I\r~Ib2 ^llr )    (8.5b)

Zauważmy, że równania (8.4) są parami sprzężone, zatem dalszej analizie wystarczy poddać równania (8.4a, c, e).

Podobnie jak przy analizie stanów ustalonych maszyn indukcyjnych średnich i dużych mocy, w warunkach zasilania napięciem o częstotliwości zbliżonej do znamionowej, pominiemy rezystancje uzwojeń stojana. Jednocześnie wprowadźmy oznaczenia:

O, u2 W = const Ą =Q.t + £10; ft2=Qt + $20

Utspl = -fiUpI, exp[/

'ST'

“o

S

5-1.

1

%

o

ehp2=^Pi,^p[i

_C0

Sp

Teraz równania stanu ustalonego silników pomocniczych przyjmą postać:

2jSp®oLWp L I rp +JSp^O^mp (j-lspl ~ Llspl ) + 2Rwp Rwp Łlrp~®    (8.6a)

Kspa>„ + PpQ.)LspIkp] + j(sp(O0 + Ppn)Lmp    =    (8.6b)

stąd

+M*

Z powyższego związku można wyznaczyć wyrażenie na zespoloną wartość składowej prądu stojana pierwszego z silników pomocniczych:

Lispi ~


Su


Sp^-Pp^io)

j®0Lsp


plr


CTp!\r


(8.7a)


gdzie CT = ——.

Lsp

Wyrażenie opisujące składową / prądu stojana drugiego z silników pomocniczych ma analogiczną postać:

■hp2


SUpheAsp'*°t~Pn"2

j®ę>L


+ CTpŁ\r


(8.7b)

Po podstawieniu wyrażeń (8.7) do równania (8.6a) otrzymujemy:

■ /■'p^O^wp Łlrp+jSp®0Ln


Su


pi^


j®0Ls


— {e


+ 2 R' R' Pu



Wyszukiwarka

Podobne podstrony:
126 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Współczynnik przenoszenia p dla
42 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków stąd dla zerowych warunków początkowych
48 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Teraz wyrażenie (6.5) wynikające z drugi
34 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków przy warunkach brzegowych: ©0,0) = 0
A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Relacja (2.2) pozwala napisać wyrażenie na
U) A,S. Jagiełło, Systemy elektromechaniczne dla elektryków Wielkości W i stanowią ogólny zapis sił
IX A S Jagiełło, Systemy elektromechaniczne dla elektryków Przebieg strat na styku koło-szyna przeds
22 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Dla wyznaczenia macierzy sztywności
24 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków 24 A.S. Jagiełło, Systemy elektromechani
A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Ostatecznie więc pulsacja własna maszyny
28 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków dla obydwu zmiennych stają się niezależn
30 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Rys. 7. Charakterystyka rezonansowa siln
38 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków Zauważmy, że: ( eya + e~- a Y l 2 J cos3
40 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków stąd 71(2/2-1) 4 r (5.13) Aby sprawdzić,
52 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków L<t 0 VF«,1. , * .
58 A.S. Jagiełło, Systemy elektromechaniczne dla elektryków VI
66 A.S. Jagiełło, Systemy elektromechaniczne dla elektrykówNa rysunku 18, w kolejności od dołu, zazn

więcej podobnych podstron